
Reducing Energy of DRAM/Flash Memory System
by OS-controlled Data Refresh

Vasily G. Moshnyaga
Dept. Electronics Engineering and Computer Science

Fukuoka University,
Fukuoka, Japan

Hua Vo, Glenn Reinman, Miodrag Potkonjak
Computer Science Department

University of California, Los Angeles
Los Angeles, USA

Abstract—This paper presents a new approach to reduce energy
consumption of DRAM/flash memory system by lowering the
frequency of DRAM refreshes. The approach is based on two
ideas: (1) a DRAM based swap-cache that reduces the number
of writes to the flash memory by keeping dirty pages as long as
possible; and (2) OS-controlled page allocation/aging policy
that stops refreshing for banks, whose pages are clean and not
accessed for a long time. Simulations show that the approach
can reduce the DRAM refresh energy by 59-74% and the
overall energy of DRAM/flash memory system by 8-24%
without increase in the execution

I. INTRODUCTION
Modern cell phones relay on DRAM/flash memory system to

satisfy demands on fast and large data storage. In 2.5-3G phones,
flash (mainly NAND) memory stores OS, application programs and
data [1]. During boot time, the OS and program codes are copied
from the flash to the DRAM in a process referred to as “memory
shadowing”. To reduce both the program download delay and the
DRAM size, recent systems employ “demand paging” that swaps
pages of code/ data between the memories on processor’s requests.
Such memory organization leads to a smaller DRAM, less loading
time, but requires specific memory management to ensure both high
speed and low energy page swapping.

II. BACKGROUND AND RELATED RESEARCH
Several issues affect page swapping in DRAM/flash memory

system. The first one is flash cleaning, i.e. necessity to erase data
before it can be overwritten. Cleaning is usually done on a block
basis, while writing on a page basis. If the block size is larger than
the size of transfer unit, any data that is still needed must be moved
elsewhere. The next issue is performance. The time to erase and
write a page in flash is 8 times longer than the time of read [2]. To
avoid delaying writes for erasure it is important to keep a pool of
erased memory available. The third issue is power. Erasing a page
in NAND memory consumes twice as more power as reading the
page. Since a write with erase is almost 10 times dissipates more
power than a read [2], page swapping policy must minimize the
number of flash memory writes, even though it might incur
additional read operations. The forth issue of DRAM/flash memory
system is inactivity. In cell-phones, a relatively short burst of
operations is usually followed by long periods of inactivity during
which the device is kept on standby. While all other components
can be powered off on idling, the data stored in DRAM must be
always refreshed or re-written to compensate the charge leakage in
memory cells. Although today’s DRAM chips employ a number of

power down modes (e.g. active, idle (or standby) and self-refresh
[3]), none of these modes appear to disable a chip entirely; refresh
is always present. When device idles for a long time, the DRAM
refresh may take almost 20% of the energy consumed by phone
over a day [4, 5]. Clearly, reducing energy consumption of DRAM
refresh can significantly extend battery life.

Research on low power DRAM refresh has been extensively
performed in the past with most efforts put at circuit optimization.
At the architecture level, a common approach is to exploit different
retention-time among cells in DRAM imposed by temperature and
process variations [6-8]. These differences provide an opportunity
to save power by refreshing different cells at different rate. The
selective refresh scheme [8] adds a valid bit to each memory row
and refreshes the rows with valid bits set [8]. The variable refresh
scheme allocates a refresh counter to each row. When the number
of cycles between the previous refresh exceeds the pre-defined
threshold, the line is refreshed. The retention-aware page allocation
[9] favors longer-retention pages over shorter retention pages when
allocating DRAM pages. This allows selecting a single refresh
period that depends on the shortest-retention page among populated
pages, instead of the shortest-retention page overall.

In this paper, we propose an OS-based approach to reduce energy
consumption of DRAM/flash memory system. Several researches
have already exploited OS support to switch DRAM banks to low
power modes. Lebeck, et al [10] proposed power-aware page
allocation polices that maximize use of lower power states while
minimizing performance overhead of transitioning back to active
mode. Fan, et al [11] studied policies for manipulating DRAM
power states in cache-based systems. They showed that an
immediate transition of idling DRAM chip to a lower power state
might work better than a more sophisticated policy that tries to
predict idling time. Lee and Chang [5] introduced an energy-aware
memory allocation in heterogeneous memory systems to maximize
the battery life. Delauz, et al [12] suggested various threshold
predictors to determine idling time after which the DRAM should
transition to a low-power state. Park, et al [13], proposed a Clean-
First-LRU page allocation policy, that swaps clean (i.e. unmodified)
pages first, while keeping dirty pages in the DRAM as long as
possible. If there are no clean pages in a predefined time window, a
standard LRU is used. To further reduce the number of flush
memory write, Park, et al [14] proposed to combine the Clean-first-
LRU with selective compression.

Despite differences the above OS-based methods have one
feature in common. At the best case, they consider data retention
energy of idling but do not provide means to reduce it. Our work is
unique in that it focuses on OS-based policy to reduce the energy of

The work was sponsored by the Ministry of Education, Technology
Science, Sports and Culture of Japan

21081-4244-0921-7/07 $25.00 © 2007 IEEE.

DRAM refresh in application specific DRAM/flash memory system.
As in [10, 12, 13, 5], we use history of memory accesses for energy-
aware page allocation. However, unlike the prior work, we optimize
allocation policy to reduce not only active energy but also the
DRAM refresh energy in the flash-DRAM based memory system.

III. THE PROPOSED APPROACH

A. Main idea
The approach we propose is based on an observation that as DRAM
size increases, more and more memory becomes unused at any
given time. Because unused memory does not need to be refreshed,
we can save energy by intelligently controlling which pages get
refreshed. The system OS knows which pages are used and unused,
so given the opportunity it could disable refresh on selected pages.
 The main idea of our approach is simple and consists in disabling
from refresh operations all individual banks which have not been
referenced in given time-window and have no dirty (or modified)
pages. If a non-referenced bank has dirty pages, we move the pages
to the swap cache (see Fig.1) to keep them in DRAM as long as
possible and thus minimize the number of writes to the flash storage.
The swapping takes place either when the cache becomes full (in
this case the LRU dirty page is moved from the cache to flash), or
when the requested page is not in DRAM (in this case, the page is
loaded from the flash bank to active DRAM bank).

In our approach, we exploit the fact that the OS not only has
physical page allocation information for each executing process but
also has information of pages that are actually being referenced (by
sampling the reference bits in the page table and TLB). By
compacting physical pages into minimum number of memory banks
(using page coloring algorithm), we potentially eliminate refresh for
entire DRAM banks in which there are no dirty pages. Modern
memory systems swap out pages when the memory space is full. In
our refresh-oriented page allocation, the OS starts swapping out
pages when writing a page to the flash memory becomes less
energy consuming than keeping the page refreshed in DRAM.

B. Assumptions
We take the following assumptions:

1. Each DRAM bank can be in two modes: refresh and non-
refresh (i.e. power down). The refresh mode can be further divided
into several modes, e.g. active, standby, nap and power-down as in
conventional DRAM, however, we do not address this issue for the
simplicity of explanation.

2. The banks are controlled separately, so each bank can be
refreshed (if it in the refresh mode) or shut down (i.e. non-
refreshed) independently of the others.

3. Each page can be either active (i.e. open) or closed. Any access
to a close page makes it active. Refresh banks may have as open as
close pages, but non-refresh banks have no active pages (all their
pages are closed).

4. The higher order banks in DRAM are allocated for flash cache to
minimize the number of writes to the flash memory. Dirty pages are
kept in the cache until it becomes full.

C. Algorithm
The proposed refresh-oriented page allocation scheme

implements the following algorithm. After a given period of time,
t1, it detects pages, which have not been accessed and closes them.
Next, after a time, t2, the algorithm checks status of refreshed banks.
If all pages in a bank are closed, the bank is put into a non-refresh
mode, while dirty pages of this bank are moved to the flash cache.
Finally, after a time, t3, the algorithm determines the least-recently
used page in the swap-cache and moves it out onto the flash-
memory. After dropping the content to flash memory, the cache
page is considered empty, and hence can be used to store other dirty
pages. If a requested page resides in the flash and DRAM is full, the
algorithm applies “clean-page-first” [13] policy to allocate the
DRAM page to be swapped with the requested page. If there are no
clean pages in DRAM, the algorithm moves the LRU dirty page
from DRAM to the swap-cache. The code below shows the
algorithm in details.

 Algorithm:
Initialization: all banks are in refresh mode, the last bank is the
flash cache; all pages in DRAM are inactive;
At t = t2,

find minimum number of memory banks that allocate all active
pages; move other banks to non-refresh mode;
for each access to a page AP
if page is in DRAM, access AP directly;

else
{find an inactive page (RP) in (non-cache) DRAM refresh-

banks;
 if no inactive pages then

 if there is a non-refresh bank, then move it to refresh
mode;(RP = the first page in this bank);

else
{ find CFLRU page (CFP),

if CFP is dirty, then move CFP to cache,
load demand page to RP (or CFP) page }

 }
do page & bank aging
 end
move page to cache:

find an empty page (EP) in cache;
if EP is not found

find a non-refresh bank (NRB) in DRAM;
if NRB exists, then move NRB to cache;

let EP be first page in this bank;
Else

{find LRU cache page (LP) ;
store content of LP to the flash memory;
empty page LP; }

drop page to empty page EP (or LP);
Page & bank aging:
for each cache bank do

{for each cache page do
{if page is not accessed in t3, drop page to flash, empty page;
else if a cache bank has only empty pages
then move the bank to the non-refresh mode}}

for each refresh non-cache bank do
{for each refresh page (RP) do

{if RP is not accessed in t1
then if RP is dirty, then move RP to cache;

 move RP to the inactive mode;
if bank has no active pages, move it to the non-refresh mode }

}

DRAM NAND
flash

Active
bank

Store to flash

Load to DRAM

… swap
cache

non-refreshed
banks

DRAM NAND
flash

Active
bank

Store to flash

Load to DRAM

… swap
cache

non-refreshed
banks

Figure 1. An illustration of proposed approach

2109

IV. EXPERIMENTAL EVALUATION

A. Energy Modeling
The energy consumed by memory system is modeled by the sum
of energies consumed by DRAM and flash memory: Etotal=
EDRAM+Eflash. The energy of each DRAM bank is directly
proportional to the number of reads (Nread) and writes (Nwrite) and
the unit access energy per read (Eread) and write (Ewrite),
respectively. Furthermore, DRAM consumes idle power (Pidle) and
refresh power (Prefresh) power during program execution. When
DRAM is inactive, it stays in the power down state consuming
only retention power (Pretention). Thus, assuming that DRAM
consists of N banks, the energy consumed by DRAM can be
calculated by,

EDRAM=Σi=1

i=N{Eread*Nread+Ewrite*Nwrite+tactive*(Pidle+Prefresh)
+tinactive*Pretention}i (1)

Similarly, the energy consumption of flash memory is modeled as,

Eflash = Efread*Nfread+(Efwrite+ Eerase)*Nfwrite, (2)

where, Efread and Efwrite are values of energy consumed by flash per
read, write and erase operation, respectively, Nfread, Nfwrite are the
number of flash reads and writes, respectively.

B. Experimental setup
To collect data we augmented the SimpleScalar simulator [16]

with our DRAM simulation program. The SimpleScalar simulated
a 400MHz 32-bit RISC processor (similar to StrongARM-110
[17]), with 32 set-associative caches (16KB inst. and 16KB data),
32B cache block size, 1 clock cycle cache hit and 3 clock-cycle
cache miss, 5 clock-cycle instruction miss-prediction penalty.

Four DRAM sizes (4, 8, 16, 32, 64, and 128) MB, respectively,
have been tested. The flash memory was 32MB. The energy
parameters of DRAM and flash memory are taken from [2] and
[15], respectively. We assumed that DRAM has 8 banks, page has
4KB, and refresh is performed every 15.6µsec per row.

Five benchmark programs (Table I) have been used in the
experiment: gcc from the SPEC2000 suite and the others from
MediaBench [18]. To model user interactions, we ran each video
program 10 times with a 30 second-gap between the runs. The input
video contained 100 frames and no delay between the frames. Each
program was run to completion. The results have been measured in
terms of the total energy consumed by the memory system, the
DRAM refresh energy and the total execution time. The energy
consumption of L1 (D- and I-) caches and the energy of MMU have
not been considered. Also, it was assumed that OS consumes 16MB
and this amount of memory was not available to the application
programs. Therefore, the memory size, which the applications could
freely use, was limited to 16MB unless otherwise explicitly stated.

C. Results
Figure 2 shows the breakdown in energy consumption and the

execution time achieved by the proposed approach on gcc
benchmark and normalized to conventional method [13]. Based on
the results obtained at fixed t2, t3 and variable t1 (see Fig.2,a), we
conclude that a small t1 increases both the energy and the delay
due to frequent page closing/opening and mode changing. Also,
due to small size of DRAM, the amount of page swapping between
DRAM and flash memory is large, so the flash access energy is

high. As t1 increases, both the number of page mode changes and
page swapping decreasing; so the total energy also goes down.
According to the results, the best value of t1 ranges between
1625ms and 3200ms. The rightmost point represents the case when
t1=t3. As we fix t1 at 3250ms, and vary t2, we see that the smaller
t2, the better (see Fig.2, b). At 0.0125ms, for example, the refresh
energy can be as much as 10%. Finally, as we expected, small t3
leads to fast page aging which extra page swapping and so increase
of both DRAM access energy and flash energy. For t3 larger than
375ms, the figures do not change (see Fig.2,c).

Figure 2(d) shows the impact of DRAM size on energy and
execution time. During execution, the gcc program accesses 2196
different pages, which require little more than 8MB of DRAM.
When the DRAM size is small, the refresh energy reduction
achieved by our approach is diminished by energy consumed on
page swapping. Therefore, the energy savings are small when
memory is 4MB and 8MB. As memory grows, more energy can be
saved. At 128MB DRAM, for example, the proposed technique can
save up to 55% of the total energy without affecting the execution
time.
 Figure 3 shows the performance of proposed technique in
perspective to the related (conventional) technique [13] for 8- and
16-MB DRAM. In this figure, bars marked by C show results of
[13]; bars marked by P depict results of the proposed technique.
Letters in parentheses denote the tested programs. We observe that
the proposed technique lowers the refresh energy, while leaving the
other energy components almost unchanged. Due to large variation
in the number of pages accessed in DRAM, the results along the
benchmarks as well memory size. We see that the proposed
technique over performs the conventional method on all the
benchmarks. Table 2 summarizes the results (Fig.4) in terms of
energy reduction achieved by the proposed approach. The larger the
memory size, the larger reduction ratio. For 16MB DRAM, for
example, our approach reduces the DRAM refresh energy by 59-
74% while lowering the total energy consumed by the tested
applications by 8-26%. The maximum delay overhead observed for
the benchmark was very small (less than 1%).

V. CONCLUSIONS
In this paper we proposed a refresh-driven page allocation

approach to lower energy consumption of DRAM/flush memory
system in portable electronic devices. According to experiments,
the proposed approach can reduce the DRAM refresh energy by
74% and total energy of DRAM/flash memory by 8-26% on
standard image and video applications without affecting program
execution time. In this preliminary work, we have not considered
the energy overhead of busses as well as the energy consumption
of OS and MMU. We also acknowledge that the investigation has
been restricted to benchmarks which lightly represent real
handheld applications. To evaluate the approach on tasks such as
internet browsing, MS-word, MS PowerPoint, Adobe Acrobat
Reader, etc. an extensive profiling of the applications is needed.
This work will be conducted in the near future.

TABLE I. BENCHMARKS AND DESCRIPTIONS

Program Description Symbol Instr.x106

Mpeg_dec A Mpeg2 video decoding Mc 62
Mpeg_enc A Mpeg2 video encoding Md 667
jpeg_com JPEG image compression Jc 577
jpeg_dec JPEGimage decompression Jd 48

gcc C code compiler gcc 1,497

2110

REFERENCES
[1] Weldon, T., Memory subsystems for 2.5G cellular handsets, Micron

Techn. Inc., Jedex, San Jose, 2004.
http://www.micron.com/products/dram/ddr2sdram/presentation.html

[2] Samsung Electronics. NAND flash memory & SmartMedia data book,
2002.

[3] Various Methods of DRAM refresh, Technical Note TN-04-30,
Micron Technology Inc., 1999.

[4] Vargas, Minimum power consumption in mobile phone memory
systems, Portable Design, 2006.

[5] Lee, H.G, and Chang, N., Low-energy heterogeneous non-volatile
memory systems for mobile systems, J. of Low-Power Electronics,
Vol.1, no.1, pp.52-62, 2005.

[6] K. Yanagisawa. Semiconductor Memory. US Patent 4,736,344, April
1988

[7] Kim,J., Papaefthymiou,M., Block-based multiperiod dynamic
memory Design for Low Data-Retention Power, IEEE Trans. VLSI
Systems, Vol. 11, No. 6, Dec. 2003, pp.1006-1018.

[8] Ohsawa, T., Kai, K., Murakami, K., Optimizing the DRAM refresh
count for merged DRAM/logic LSIs, ACM/IEEE ISLPED 1998, 82-
87.

[9] Venkatesan, R., K., Herr, S., Rotenberg, E. Retention-Aware
Placement in DRAM (RAPID): Software Methods for Quasi-Non-
Volatile DRAM, Proc. IEEE HPCA-12, 2006

[10] Lebeck, A.R., Fan, X., Zeng, H., Ellis, C., Power-aware page
allocation, Proc. 9th Int. Conf. on Architectural Support for
Programing Languages and OS (ASPLOS IX), Nov. 2000

[11] Fan, X., Zeng, H., Ellis, C., Lebeck, A.R., Memory controller policies
for DRAM power management, Proc.ACM/IEEE ISLPED, 2001.

[12] Delauz, V., et al., Scheduler-based DRAM energy power
management, 39th ACM/IEEE DAC, pp.697-702, 2002.

[13] Park, C., Kang, J.U., Park, S.,Y., Kim, J.S., Energy aware demand
paging on NAND flash-based embedded systems, Proc. ACM/IEEE
ISLPED-2004, pp.338-343.

[14] Park, S., Lim, H., Chang, H., Sung, W., Compressed swapping or
NAND flash memory based embedded systems, Proc. IEEE
Workshop on Signal Processing Systems (SiPS), 2003.

[15] Samsung Electronics, 128Mb DDR SDRAM Specification, Version
1.0, Rev.1.0, Nov.2, 2000.

[16] Burger D., Austin, T., Bennet, S., Evaluating future microprocessors-
the superscalar tool set. Technical Report 1306, Univ. of Wisconsin-
Madison, CSD, July 1996.

[17] SA-110 Microprocessor, Technical Reference Manual, Intel
Corporation, Dec.2000.

[18] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, MediaBench: a
tool for evaluating and synthesizing multimedia and communication
systems, Proc. the IEEE Int. Symp. on Microarchitecture, 1997.

0.8

0.9

1

1.1

1.2

1.3

125 625 1125 1625 2125 2625 3125
t1 (ms)

N
or

m
ili

ze
d

va
lu

e
Flash Access E
Dram Acess E
Refresh E
Total E
Execution Time

0.85

0.9

0.95

1

1.05

0 500 1000 1500 2000
t2 (ms)

N
or

m
ili

ze
d

va
lu

e

Flash E
Dram Access E
Refresh E
Total E
Execution Time

0.85

0.9

0.95

1

1.05

125 625 1125 1625 2125 2625 3125
t3 (ms)

N
or

m
al

iz
ed

 v
al

ue

Flash E
Dram Access E
Refresh E
Total E
Execution Time

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

4 8 16 32 64 128

Dram size (MB)

N
o
r
m
a
l
i
z
e
d

v
a
l
u
e

Total Energy Execution Time

Figure 2 (a-d): Dependence of the results on t1, t2, t3, and the DRAM size, respectively

(c) (b) (a) (d)

0

20

40

60

80

100

C(Mc) P(Mc) C(Md) P(Md) C(Jc) P(Jc) C(Jd) P(Jd) C(gcc) P(gcc)

E
ne

rg
y

D
is

tr
ib

ut
io

n
(%

)

Flash Refresh DRAM

Figure 3: Results obtained for 8MB DRAM (left) and 16MB DRAM (right)

0

20

40

60

80

100

C(Mc) P(Mc) C(Md) P(Md) C(Jc) P(Jc) C(Jd) P(Jd) C(gcc) P(gcc)
E

ne
rg

y
D

is
tr

ib
ut

io
n

(%
)

Flash Refresh DRAM

TABLE II. ENERGY REDUCTION RATIO OBSERVED FOR BENCHMARKS

Benchmarks Jc Jd Mc Md gcc

DRAM size (MB) 8 16 8 16 8 16 8 16 8 16

Refresh energy (%) 62 71 64 72 68 70 72 74 32 59

Total energy (%) 20 26 21 23 24 28 14 20 10 21

2111

