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Abstract—This paper presents a new approach to reduce energy 
consumption of DRAM/flash memory system by lowering the 
frequency of DRAM refreshes. The approach is based on two 
ideas: (1) a DRAM based swap-cache that reduces the number 
of writes to the flash memory by keeping dirty pages as long as 
possible; and (2) OS-controlled page allocation/aging policy 
that stops refreshing for banks, whose pages are clean and not 
accessed for a long time. Simulations show that the approach 
can reduce the DRAM refresh energy by 59-74% and the 
overall energy of DRAM/flash memory system by 8-24% 
without increase in the execution 

I. INTRODUCTION 
Modern cell phones relay on DRAM/flash memory system to 

satisfy demands on fast and large data storage. In 2.5-3G phones, 
flash (mainly NAND) memory stores OS, application programs and 
data [1]. During boot time, the OS and program codes are copied 
from the flash to the DRAM in a process referred to as “memory 
shadowing”. To reduce both the program download delay and the 
DRAM size, recent systems employ “demand paging” that swaps 
pages of code/ data between the memories on processor’s requests. 
Such memory organization leads to a smaller DRAM, less loading 
time, but requires specific memory management to ensure both high 
speed and low energy page swapping.  

II. BACKGROUND AND RELATED RESEARCH 
Several issues affect page swapping in DRAM/flash memory 

system. The first one is flash cleaning, i.e. necessity to erase data 
before it can be overwritten. Cleaning is usually done on a block 
basis, while writing on a page basis. If the block size is larger than 
the size of transfer unit, any data that is still needed must be moved 
elsewhere. The next issue is performance. The time to erase and 
write a page in flash is 8 times longer than the time of read [2]. To 
avoid delaying writes for erasure it is important to keep a pool of 
erased memory available. The third issue is power. Erasing a page 
in NAND memory consumes twice as more power as reading the 
page. Since a write with erase is almost 10 times dissipates more 
power than a read [2], page swapping policy must minimize the 
number of flash memory writes, even though it might incur 
additional read operations. The forth issue of DRAM/flash memory 
system is inactivity. In cell-phones, a relatively short burst of 
operations is usually followed by long periods of inactivity during 
which the device is kept on standby. While all other components 
can be powered off on idling, the data stored in DRAM must be 
always refreshed or re-written to compensate the charge leakage in 
memory cells. Although today’s DRAM chips employ a number of 

power down modes (e.g. active, idle (or standby) and self-refresh 
[3]), none of these modes appear to disable a chip entirely; refresh 
is always present. When device idles for a long time, the DRAM 
refresh may take almost 20% of the energy consumed by phone 
over a day [4, 5]. Clearly, reducing energy consumption of DRAM 
refresh can significantly extend battery life.  

Research on low power DRAM refresh has been extensively 
performed in the past with most efforts put at circuit optimization. 
At the architecture level, a common approach is to exploit different 
retention-time among cells in DRAM imposed by temperature and 
process variations [6-8]. These differences provide an opportunity 
to save power by refreshing different cells at different rate. The 
selective refresh scheme [8] adds a valid bit to each memory row 
and refreshes the rows with valid bits set [8]. The variable refresh 
scheme allocates a refresh counter to each row. When the number 
of cycles between the previous refresh exceeds the pre-defined 
threshold, the line is refreshed. The retention-aware page allocation 
[9] favors longer-retention pages over shorter retention pages when 
allocating DRAM pages. This allows selecting a single refresh 
period that depends on the shortest-retention page among populated 
pages, instead of the shortest-retention page overall. 

In this paper, we propose an OS-based approach to reduce energy 
consumption of DRAM/flash memory system. Several researches 
have already exploited OS support to switch DRAM banks to low 
power modes. Lebeck, et al [10] proposed power-aware page 
allocation polices that maximize use of lower power states while 
minimizing performance overhead of transitioning back to active 
mode. Fan, et al [11] studied policies for manipulating DRAM 
power states in cache-based systems. They showed that an 
immediate transition of idling DRAM chip to a lower power state 
might work better than a more sophisticated policy that tries to 
predict idling time. Lee and Chang [5] introduced an energy-aware 
memory allocation in heterogeneous memory systems to maximize 
the battery life. Delauz, et al [12] suggested various threshold 
predictors to determine idling time after which the DRAM should 
transition to a low-power state. Park, et al [13], proposed a Clean-
First-LRU page allocation policy, that swaps clean (i.e. unmodified) 
pages first, while keeping dirty pages in the DRAM as long as 
possible. If there are no clean pages in a predefined time window, a 
standard LRU is used. To further reduce the number of flush 
memory write, Park, et al [14] proposed to combine the Clean-first-
LRU with selective compression. 

Despite differences the above OS-based methods have one 
feature in common. At the best case, they consider data retention 
energy of idling but do not provide means to reduce it. Our work is 
unique in that it focuses on OS-based policy to reduce the energy of 
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DRAM refresh in application specific DRAM/flash memory system. 
As in [10, 12, 13, 5], we use history of memory accesses for energy-
aware page allocation. However, unlike the prior work, we optimize 
allocation policy to reduce not only active energy but also the 
DRAM refresh energy in the flash-DRAM based memory system. 

III. THE PROPOSED APPROACH 

A.  Main idea 
The approach we propose is based on an observation that as DRAM 
size increases, more and more memory becomes unused at any 
given time. Because unused memory does not need to be refreshed, 
we can save energy by intelligently controlling which pages get 
refreshed. The system OS knows which pages are used and unused, 
so given the opportunity it could disable refresh on selected pages. 
   The main idea of our approach is simple and consists in disabling 
from refresh operations all individual banks which have not been 
referenced in given time-window and have no dirty (or modified) 
pages. If a non-referenced bank has dirty pages, we move the pages 
to the swap cache (see Fig.1) to keep them in DRAM as long as 
possible and thus minimize the number of writes to the flash storage. 
The swapping takes place either when the cache becomes full (in 
this case the LRU dirty page is moved from the cache to flash), or 
when the requested page is not in DRAM (in this case, the page is 
loaded from the flash bank to active DRAM bank).  

In our approach, we exploit the fact that the OS not only has 
physical page allocation information for each executing process but 
also has information of pages that are actually being referenced (by 
sampling the reference bits in the page table and TLB). By 
compacting physical pages into minimum number of memory banks 
(using page coloring algorithm), we potentially eliminate refresh for 
entire DRAM banks in which there are no dirty pages. Modern 
memory systems swap out pages when the memory space is full. In 
our refresh-oriented page allocation, the OS starts swapping out 
pages when writing a page to the flash memory becomes less 
energy consuming than keeping the page refreshed in DRAM. 

B. Assumptions 
We take the following assumptions: 

1. Each DRAM bank can be in two modes: refresh and non-
refresh (i.e. power down). The refresh mode can be further divided 
into several modes, e.g. active, standby, nap and power-down as in 
conventional DRAM, however, we do not address this issue for the 
simplicity of explanation. 

2. The banks are controlled separately, so each bank can be 
refreshed (if it in the refresh mode) or shut down (i.e. non-
refreshed) independently of the others.  

3. Each page can be either active (i.e. open) or closed. Any access 
to a close page makes it active. Refresh banks may have as open as 
close pages, but non-refresh banks have no active pages (all their 
pages are closed). 

4. The higher order banks in DRAM are allocated for flash cache to 
minimize the number of writes to the flash memory. Dirty pages are 
kept in the cache until it becomes full. 

C. Algorithm 
The proposed refresh-oriented page allocation scheme 

implements the following algorithm. After a given period of time, 
t1, it detects pages, which have not been accessed and closes them. 
Next, after a time, t2, the algorithm checks status of refreshed banks. 
If all pages in a bank are closed, the bank is put into a non-refresh 
mode, while dirty pages of this bank are moved to the flash cache. 
Finally, after a time, t3, the algorithm determines the least-recently 
used page in the swap-cache and moves it out onto the flash-
memory. After dropping the content to flash memory, the cache 
page is considered empty, and hence can be used to store other dirty 
pages. If a requested page resides in the flash and DRAM is full, the 
algorithm applies “clean-page-first” [13] policy to allocate the 
DRAM page to be swapped with the requested page. If there are no 
clean pages in DRAM, the algorithm moves the LRU dirty page 
from DRAM to the swap-cache. The code below shows the 
algorithm in details. 

 Algorithm: 
Initialization: all banks are in refresh mode, the last bank is the 
flash cache; all pages in DRAM are inactive; 
At t = t2, 

find minimum number of memory banks that allocate all active 
pages; move other banks to non-refresh mode; 
for each access to a page AP 
if page is in DRAM, access AP directly; 

else  
{find an inactive page (RP) in (non-cache) DRAM refresh-

banks; 
 if no inactive pages then 

 if there is a non-refresh bank, then move it to refresh 
mode;(RP = the first page in this bank); 

else 
{ find CFLRU page (CFP), 

if CFP is dirty, then move CFP to cache, 
load demand page to RP (or CFP) page   } 

   } 
do page & bank aging 
 end 
move page to cache: 

find an empty page (EP) in cache; 
if EP is not found  

find a non-refresh bank (NRB) in DRAM; 
if NRB exists, then move NRB to cache; 

let EP be first page in this bank; 
Else    

{find LRU cache page (LP) ; 
store content of LP to the flash memory; 
empty page LP;      } 

drop page to empty page EP (or LP); 
Page & bank aging: 
for each cache bank do 

{for each cache page do 
{if page is not accessed in t3, drop page to flash, empty page; 
else if a cache bank has only empty pages  
then move the bank to the non-refresh mode}} 

for each refresh non-cache bank do 
{for each refresh page (RP) do 

{if RP is not accessed in t1 
then if RP is dirty, then move RP to cache; 

      move RP to the inactive mode; 
if bank has no active pages, move it to the non-refresh mode } 

} 
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Figure 1.   An illustration of proposed approach 
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IV. EXPERIMENTAL EVALUATION 

A.  Energy Modeling 
The energy consumed by memory system is modeled by the sum 
of energies consumed by DRAM and flash memory: Etotal= 
EDRAM+Eflash. The energy of each DRAM bank is directly 
proportional to the number of reads (Nread) and writes (Nwrite) and 
the unit access energy per read (Eread) and write (Ewrite), 
respectively. Furthermore, DRAM consumes idle power (Pidle) and 
refresh power (Prefresh) power during program execution. When 
DRAM is inactive, it stays in the power down state consuming 
only retention power (Pretention). Thus, assuming that DRAM 
consists of N banks, the energy consumed by DRAM can be 
calculated by,  
 
EDRAM=Σi=1

i=N{Eread*Nread+Ewrite*Nwrite+tactive*(Pidle+Prefresh) 
+tinactive*Pretention}i                                                                                 (1) 
 

Similarly, the energy consumption of flash memory is modeled as, 
 

Eflash = Efread*Nfread+(Efwrite+ Eerase)*Nfwrite,             (2) 
 

where, Efread and Efwrite are values of energy consumed by flash per 
read, write and erase operation, respectively, Nfread, Nfwrite are the 
number of flash reads and writes, respectively. 

B. Experimental setup 
To collect data we augmented the SimpleScalar simulator [16] 

with our DRAM simulation program. The SimpleScalar simulated 
a 400MHz 32-bit RISC processor (similar to StrongARM-110 
[17]), with 32 set-associative caches (16KB inst. and 16KB data), 
32B cache block size, 1 clock cycle cache hit and 3 clock-cycle 
cache miss, 5 clock-cycle instruction miss-prediction penalty. 

Four DRAM sizes (4, 8, 16, 32, 64, and 128) MB, respectively, 
have been tested. The flash memory was 32MB. The energy 
parameters of DRAM and flash memory are taken from [2] and 
[15], respectively. We assumed that DRAM has 8 banks, page has 
4KB, and refresh is performed every 15.6µsec per row.  

Five benchmark programs (Table I) have been used in the 
experiment: gcc from the SPEC2000 suite and the others from 
MediaBench [18]. To model user interactions, we ran each video 
program 10 times with a 30 second-gap between the runs. The input 
video contained 100 frames and no delay between the frames. Each 
program was run to completion. The results have been measured in 
terms of the total energy consumed by the memory system, the 
DRAM refresh energy and the total execution time. The energy 
consumption of L1 (D- and I-) caches and the energy of MMU have 
not been considered. Also, it was assumed that OS consumes 16MB 
and this amount of memory was not available to the application 
programs. Therefore, the memory size, which the applications could 
freely use, was limited to 16MB unless otherwise explicitly stated. 

C. Results 
Figure 2 shows the breakdown in energy consumption and the 

execution time achieved by the proposed approach on gcc 
benchmark and normalized to conventional method [13]. Based on 
the results obtained at fixed t2, t3 and variable t1 (see Fig.2,a), we 
conclude that a small t1 increases both the energy and the delay 
due to frequent page closing/opening and mode changing. Also, 
due to small size of DRAM, the amount of page swapping between 
DRAM and flash memory is large, so the flash access energy is 

high. As t1 increases, both the number of page mode changes and 
page swapping decreasing; so the total energy also goes down. 
According to the results, the best value of t1 ranges between 
1625ms and 3200ms. The rightmost point represents the case when 
t1=t3. As we fix t1 at 3250ms, and vary t2, we see that the smaller 
t2, the better (see Fig.2, b). At 0.0125ms, for example, the refresh 
energy can be as much as 10%. Finally, as we expected, small t3 
leads to fast page aging which extra page swapping and so increase 
of both DRAM access energy and flash energy. For t3 larger than 
375ms, the figures do not change (see Fig.2,c). 

Figure 2(d) shows the impact of DRAM size on energy and 
execution time. During execution, the gcc program accesses 2196 
different pages, which require little more than 8MB of DRAM. 
When the DRAM size is small, the refresh energy reduction 
achieved by our approach is diminished by energy consumed on 
page swapping. Therefore, the energy savings are small when 
memory is 4MB and 8MB. As memory grows, more energy can be 
saved. At 128MB DRAM, for example, the proposed technique can 
save up to 55% of the total energy without affecting the execution 
time. 
      Figure 3 shows the performance of proposed technique in 
perspective to the related (conventional) technique [13] for 8- and 
16-MB DRAM. In this figure, bars marked by C show results of 
[13]; bars marked by P depict results of the proposed technique. 
Letters in parentheses denote the tested programs. We observe that 
the proposed technique lowers the refresh energy, while leaving the 
other energy components almost unchanged.  Due to large variation 
in the number of pages accessed in DRAM, the results along the 
benchmarks as well memory size. We see that the proposed 
technique over performs the conventional method on all the 
benchmarks. Table 2 summarizes the results (Fig.4) in terms of 
energy reduction achieved by the proposed approach. The larger the 
memory size, the larger reduction ratio. For 16MB DRAM, for 
example, our approach reduces the DRAM refresh energy by 59-
74% while lowering the total energy consumed by the tested 
applications by 8-26%. The maximum delay overhead observed for 
the benchmark was very small (less than 1%). 

V. CONCLUSIONS 
In this paper we proposed a refresh-driven page allocation 

approach to lower energy consumption of DRAM/flush memory 
system in portable electronic devices. According to experiments, 
the proposed approach can reduce the DRAM refresh energy by 
74% and total energy of DRAM/flash memory by 8-26% on 
standard image and video applications without affecting program 
execution time. In this preliminary work, we have not considered 
the energy overhead of busses as well as the energy consumption 
of OS and MMU. We also acknowledge that the investigation has 
been restricted to benchmarks which lightly represent real 
handheld applications. To evaluate the approach on tasks such as 
internet browsing, MS-word, MS PowerPoint, Adobe Acrobat 
Reader, etc. an extensive profiling of the applications is needed. 
This work will be conducted in the near future. 

TABLE I.  BENCHMARKS AND DESCRIPTIONS 

Program Description Symbol Instr.x106

Mpeg_dec A Mpeg2 video decoding Mc 62 
Mpeg_enc A Mpeg2 video encoding Md 667 
jpeg_com JPEG image compression Jc 577 
jpeg_dec JPEGimage decompression Jd 48 

gcc C code compiler gcc 1,497 
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Figure 2 (a-d):  Dependence of the results on t1, t2, t3, and the DRAM size, respectively 
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Figure 3:   Results obtained for 8MB DRAM (left) and 16MB DRAM (right) 
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TABLE II.  ENERGY REDUCTION RATIO OBSERVED FOR BENCHMARKS 

Benchmarks Jc Jd Mc Md gcc 

DRAM size (MB) 8 16 8 16 8 16 8 16 8 16 

Refresh energy (%) 62 71 64 72 68 70 72 74 32 59 

Total energy (%) 20 26 21 23 24 28 14 20 10 21 
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