
An Efficient Finite Precision Realization of the
Block Adaptive Decision Feedback Equalizer

Rafi Ahamed Shaik∗ and Mrityunjoy Chakraborty†
∗Indian Institute of Technology, Guwahati-781 039, India

Email: rafiahamed@iitg.ernet.in
†Indian Institute of Technology, Kharagpur-721 302, India

Email: mrityun@ece.iitkgp.ernet.in

Abstract— Recently, a block based adaptive decision feedback
equalizer (ADFE) is presented which first uses an iterative scheme
to evaluate a block of unknown decisions. FFT based block
processing is then used on the received input block and the
decision block to carry out the block ADFE operation. A direct
floating point (FP) based realization of this scheme, however,
pushes up the cost and complexity of processing hugely, as each
FP operation involves several additional steps not present in its
fixed point (FxP) counterpart. To overcome this problem, a block
floating point (BFP) based treatment is presented in this paper
for realization of the block ADFE. The proposed scheme, while
maintaining FP like high dynamic range, deploys mostly FxP
operations and thus reduces the processing cost and complexity
substantially.

I. I NTRODUCTION

The adaptive decision feedback equalizer (ADFE) is an
effective means for equalizing channels that exhibit spectral
nulls and / or has a long impulse response (IR) giving rise
to inter-symbol interference over a very large number of
symbol periods. The linear equalizer is not a very effective
option in such cases, due to the possibility of substantial
noise enhancement and also due to a very large order re-
quirement. The ADFE consists of a feed forward filter (FFF)
and a feedback filter (FBF). The FFF, working directly on
the received data, tries to equalize the anticausal part of the
channel impulse response. The residual ISI at the FFF output
is then canceled by passing the past decisions through an
appropriately designed FBF and subtracting the FBF output
from the FFF output. Both the FFF and the FBF coefficients
are trained by some suitable adaptive algorithm. In this paper,
we consider the simple LMS [8] based ADFE.

A common problem faced by the ADFE is that with increas-
ing data transmission rate, the channel IR length increases and
thus the order of both the FFF and the FBF increases. The
resulting increase in complexity makes the real time operation
of the ADFE difficult, specially in view of simultaneous
shortening of the symbol period. Block processing [6] is one of
the approaches to reduce complexities in digital filters, as the
block based computations like convolutions and correlations
can be implemented using FFT. However, the idea of block
processing can not be applied directly to the ADFE, since,
while block processing of the FFF input, i.e., received data
is possible as these are known a priori, same is not true for
the FBF input, i.e., decisions, which are unknown and are in

fact sought to be evaluated by the ADFE. In [5], an iterative
scheme is presented that evaluates the block of unknown
decisions requiring only a few iteration steps. Computations
within the iteration are block based and thus can be realized
using FFT. Once the decisions are known, usual FFT based
block processing techniques are applied to carry out the ADFE
operation.

In a practical communication system, the input to the
equalizer is in floating point (FP) form, caused by the need to
amplify the weak, received signal with fluctuating signal level,
by a programmable gain amplifier (PGA) that adjusts its gain
continuously (by a power of two) for maximal utilization of
the ADC dynamic range. A FP based processing, however,
pushes up the cost and complexity of processing enormously,
as computations in FP involve several additional steps not
present in fixed point (FxP) computations. In this paper, we
tackle this problem, by presenting a block floating point (BFP)
treatment to the finite precision realization of [5]. In BFP,
a common exponent is assigned to a block of data. As a
result, computations involving these data require only simple
FxP operations, while presence of the exponent maintains the
desired high dynamic range. In recent years, the BFP format
has been used extensively for efficient realization of various
forms of digital and adaptive filters ([1]-[4]). The proposed
treatment uses the philosophy of [3] and being based largely
on FxP operations, achieves considerable speed up over a FP
based realization of [5].

Throughout the paper, we follow the same notation as used
in [5], namely, byx(n) we denote a scalar quantity at time
instantn, whereas byxM (n), we denote either aM × 1 filter
coefficient vector at indexn, or, a data vector≡ [x(n)x(n−
1) · · ·x(n−M +1)]t with x(n) denoting the data input at the
current indexn. In addition [x]first.Q and [x]last.Q indicate
respectively the firstQ and lastQ elements of the vectorx
andXM,N denotes a matrix ofM rows andN columns. If the
matrix is square, then the simpler notationXM is used instead
of XM,M . The notationXM is used to denote anM -length
column vector in the frequency domain. Finally, characters
with an overbar are used to indicate mantissas andZM for
any integer, M ≥ 0 denotes the set{0, 1, · · · ,M − 1}.

NCC 2009, January 16-18, IIT Guwahati 340

II. I MPLEMENTATION OF BLOCK ADFE

Consider the block ADFE [5] that takesx(n), n ∈ Z as
the input and updates the equalizer weights once per block of
sizeQ. For thej-th block, the ADFE operation is given by
the following block formulated set of equations:

yQ(jQ+Q− 1)=XQ,M wf
M (j) +DQ,L wb

L(j), (1)

dQ(jQ+Q− 1)=f{yQ(jQ+Q− 1)}, (2)

eQ(jQ+Q− 1)=dQ(jQ+Q− 1)− yQ(jQ+Q− 1),(3)

wf
M (j + 1)=wf

M (j) + µXH
Q,M eQ(jQ+Q− 1), (4)

wb
L(j + 1)=wb

L(j) + µDH
Q,L eQ(jQ+Q− 1). (5)

Where,

XQ,M =



x(jQ+Q− 1) · · · x(jQ+Q−M)

...
.. .

...
x(jQ) · · · x(jQ−M + 1)


,

DQ,L = [D1
Q,Q−1 D2

Q,L−Q+1],

with

D1
Q,Q−1 =



d(jQ+Q− 2) · · · d(jQ)

...
. ..

...
d(jQ− 1) · · · d(jQ−Q+ 1)


,

and

D2
Q,L−Q+1 =




d(jQ− 1) ... d(jQ− L+Q− 1)
...

. ..
...

d(jQ−Q) ... d(jQ− L)


.

In (2), f{.} is aQ-dimensional decision device in which the
distance between its input and discrete output is minimum in
the Euclidean sense. Also, the FBF orderL is assumed above
to be greater thanQ (cases whereL ≤ Q form a special case
of the proposed treatment).

In the proposed scheme, the equalizer weight vector
w(j) = [wf t

M (j) wb t
L (j)]t is represented in a BFP format

as :
w(j) = [wf t

M (j) wb t
L (j)]t 2ψj , (6)

where
wf

M (j) = [wf
0 (j) wf

1 (j) · · ·wf
M−1(j)]

t (7)

and
wb

L(j) = [wb
1(j) w

b
2(j) · · ·wb

L(j)]t (8)

are the mantissa vectors for the FFF and the FBF respectively
for the j-th block. The integerψj is a time-varying block
exponent which needs to be updated at each block indexj
and is chosen to ensure that|wf

m(j)| < 1
2 for m ∈ ZM and

|wb
l+1(j)| < 1

2 for l ∈ ZL.
The Proposed Implementation: The proposed BFP treatment
to the block ADFE consists of three stages that are mutually
pipelined, namely,
(i) Buffering : Here, the input sequencex(n) is partitioned
into non-overlapping blocks of lengthN each, with thei-
th block given by{x(n)|n ∈ Z ′i}, whereZ ′i = {iN, iN +

1, ..., iN +N − 1}, i ∈ Z. For this, the input is shifted into
a buffer of sizeN . We takeN to be an integer multiple of
Q, i.e., N = KQ, K ∈ Z, meaning that in each block of
sizeN , the equalizer weights are updatedK times. Also, we
chooseN ≥ M − 1, as otherwise, the input vectorx(n)
may involve data from three or more adjacent blocks and thus
the complexity of implementation would go up. The buffer is
cleared and its contents transferred to a block formatter once
in everyN input clock cycles.
(ii) Block formatting of input: Here, the data samplesx(n)
constituting thei-th block,i ∈ Z and available in FP form, are
block formatted as per [3], resulting in the BFP representation
: x(n) = x(n) 2γi , n ∈ Z ′i whereγi = exi + Si, exi =
blog2Mic+ 1, Mi = max{|x(n)| | n ∈ Z ′i}. Next within the
i-th block, consider thel-th sub-block,l = 0, 1, · · · ,K − 1,
given by the index set:jQ + r, r = 0, 1, · · · , Q − 1, where
j = iK + l. For the l-th sub-block, the FFF output vector
yf

Q(jQ+Q− 1) is then given as

yf
Q(jQ+Q− 1) = XQ,M wf

M (j), (9)

j = iK + l. Assuming that each element ofXQ,M belongs
to the i-th block, we can expressyf

Q(jQ+Q− 1) in a BFP
form as

yf
Q(jQ+Q− 1) = yf

Q(jQ+Q− 1) 2γi+ψj , (10)

where
yf

Q(jQ+Q− 1) = XQ,M wf
M (j) (11)

denotes the FFF output mantissa vector for thel-th sub-block.
For no overflow in yf

Q(jQ + Q − 1), it is required that
each element|yf (jQ + r)| < 1, r ∈ ZQ. However, in the
proposed scheme, we restrict eachyf (jQ+ r), r ∈ ZQ to lie
between+ 1

4 and− 1
4 . From [3] and also from the fact that

|wf
m(n)| < 1

2 , m ∈ ZM , this implies a lower limit of S as
Smin = dlog22Me. However, whileSmin provides the lower
limit of Si, the actual value ofSi is, in fact, chosen to ensure a
uniform BFP representation ofx(n) during the block-to-block
transition phase as well, i.e., when part ofx(n) comes from the
i-th block and part from the(i− 1)-th block. This is realized
by using the exponent assignment algorithm proposed in [2]
and by rescaling the last(M − 1) elements of the previous
block, namely,x(iN −M + 1), · · · , x(iN − 1), by dividing
the respective mantissas by2∆γi , where∆γi = γi − γi−1.
(iii) Equalization and weight updating: This consists of four
main computations, namely,
(a) FFF output: The block formatter inputsx(n), n ∈ Z ′i,
the rescaled mantissas forx(iN − k), k = 1, 2, . . . ,M − 1
and the block exponentγi to the FFF, which computes the
output exponent for thel-th sub-block,γi + ψj , j = iK + l,
l = 0, 1, · · · ,K − 1, and the output mantissa vector as given
by (10), using overlap-save method [6], FFT (denoted by ‘F ’)
and IFFT (denoted by ‘F−1’), as

yf
Q(jQ+Q− 1) = JQ [F−1(X

d

S×S W
f

S)]last.Q (12)

where,S = M +Q− 1,

W
f

S = F ([wf t
M (j) 0t

S−M]t) (13)

NCC 2009, January 16-18, IIT Guwahati 341

and

X
d

S×S = diag(F ([x(jQ+Q−S) · · ·x(jQ+Q−1)]t)). (14)

The matrixJQ in (12) is the so-called exchange matrix, the
FFT/IFFT in (12-14) itself is realized using BFP [7], where
each butterfly computation is based on FxP operation only and
up/down scaling is employed between the different butterfly
stages to prevent overflow and also to use the dynamic range
maximally.
(b) FBF output : Unlike the FFF, the computation of the
FBF output vectoryb

Q(jQ+Q− 1) = DQ,L wb
L(j) contains

unknown decisions in the matrixDQ,L, as given byd(k),
k = jQ, · · · , jQ + Q − 2. To avoid this causality problem,
we adopt the approach of [5], where the computation of
yb

Q(jQ+Q−1) is systematically decomposed into two parts:
one containing past and thus known decisions, and the other
involving purely the current and thus unknown decisions. For
this, we first rewrite the FBF outputyb

Q(jQ+Q− 1) as

yb
Q(jQ+Q− 1)=D2

Q,L−Q+1w
b 2
L−Q+1(j)

+W b
Q,2Q−1(j)d2Q−1(jQ+Q− 1) (15)

where,W b
Q,2Q−1(j) is a convolution matrix with the first

row given as [0 wb
1(j) · · ·wb

Q−1(j) 0 · · · 0] and anym-
th row, m ≥ 2 given by m right shift of the first
row. The vectorwb 2

L−Q+1(j) is given by wb 2
L−Q+1(j) =

[wb
Q(j) wb

Q+1(j) · · ·wb
L(j)]t.

PartitioningW b
Q,2Q−1(j) as

W b
Q,2Q−1(j) = [W b 1

Q,Q(j) W b 2
Q,Q−1(j)],

the FBF output can be written as

yb
Q(jQ+Q− 1)=D2

Q,L−Q+1w
b 2
L−Q+1(j)

+W b 1
Q,Q(j)dQ(jQ+Q− 1)

+W b 2
Q,Q−1(j)dQ−1(jQ− 1), (16)

wheredQ(jQ+Q−1) = [d(jQ+Q−1) · · · d(jQ)]t contains
the Q unknown decisions anddQ−1(jQ − 1) = [d(jQ −
1) · · · d(jQ−Q+ 1)]t containsQ− 1 known decisions from
previous sub-blocks. Next, we group three terms on the R.H.S
of (15) into two categories, namely, FB2 output given as,

yb 2
Q (jQ+Q− 1) = D2

Q,L−Q+1w
b 2
L−Q+1(j), (17)

and FB1 output given as,

yb 1
Q (jQ+Q− 1)=W b

Q,2Q−1(j)d2Q−1(jQ+Q− 1) (18)

=yb 1,1
Q (jQ+Q− 1) + yb 1,2

Q (jQ+Q− 1)

where

yb 1,1
Q (jQ+Q− 1) = W b 1

Q,Q(j)dQ(jQ+Q− 1) (19)

and

yb 1,2
Q (jQ+Q− 1) = W b 2

Q,Q−1(j)dQ−1(jQ− 1) (20)

Note that computation in (17) and (20) are simple convo-
lutions involving known decisions and thus can be realized
efficiently using overlap and save method/FFT. Now let

yc
Q(jQ+Q− 1)=yf

Q(jQ+Q− 1) + yb 2
Q (jQ+Q− 1)

+yb 1,2
Q (jQ+Q− 1) (21)

Then,

yQ(jQ+Q−1) = yc
Q(jQ+Q−1)+yb 1,1

Q (jQ+Q−1). (22)

Clearly, yc
Q(jQ + Q − 1) is the deterministic component in

yQ(jQ+Q−1), as it depends on available data and past deci-
sions only, whereas,yc

Q(jQ+Q− 1) is the non-deterministic
component which involve the unknown decisions.

In [5], an iterative procedure is suggested which first
evaluates (19) (in time domain) by using an appropriately
chosen initial value fordQ(jQ+Q− 1) and then, computes
yQ(jQ+Q−1) as per (22), which is then used in (2) to obtain
the first iterate fordQ(jQ+Q−1). This is again substituted in
(17) and the iteration is carried out further. It is shown [5] that
this iteration converges to the correct vectordQ(jQ+Q− 1)
in Q or less number of steps for any choice of the initial value.
A simple choice is to set the initial decision vector to the zero
vector, i.e., we start the iterative procedure by replacing the
unknown decisions inDQ,L with zeros.

Unlike the FFF, BFP computation of the FBF output
yb

Q(jQ + Q − 1) = DQ,L wb
L(j) ≡ DQ,L wb

L(j)2ψj would
require block formatting of the decision matrixDQ,L for each
l-th sub-block,l = 0, 1, · · · ,K − 1, within the i-th block.
However, like the FFF, the FBF output is also constrained to
satisfy |yb(jQ + r)| < 1

4 , r = 0, 1, · · · , Q − 1, j = iK + l,
whereyb(jQ + r) denotes the mantissa ofyb(jQ + r). The
corresponding scaling factor, say,S

′
is then required to satisfy

S′ ≥ S
′
min = dlog22Le. For minimum loss of bits,

we chooseS′ = S
′
min. Now if the decisionsd(n), n ∈ Z

generated by the quantizer are represented byβ(+1sign) bit
FxP numbers, right shift byS

′
min may, however, result in the

loss of many significant bits, or, even flushing of the register
to zero, for small values of|d(n)|. To avoid this, we first
assume that the discrete levels of the quantizer are stored
in a normalized, scaled format, meaning that the output of
the quantizer, as per (2), is a length-Q decision vector in
normalized FP form. The decision vector is subsequently block
formatted with scaling factorS = S

′
min. Computation of

yb
Q(jQ+Q− 1) in BFP then proceeds as follows:
• Assume that the past decisions present in the decision matrix
DQ,L, namely,d(iQ − 1), · · · , d(jQ − L) are available in a
BFP form as,

d(jQ− r) = dj−1(jQ− r) 2νj−1 , r = 1, 2, · · · , L, (23)

with |dj−1(jQ− r)| < 2−S
′
min . Then, (17) is evaluated as

yb 2
Q (jQ+Q− 1) = yb 2

Q (jQ+Q− 1)2νj−1+ψj , (24)

where, the mantissa vectoryb 2
Q (jQ+Q− 1) is given as,

yb 2
Q (jQ+Q− 1) = D

2

Q,L−Q+1w
b 2
L−Q+1(j), (25)

NCC 2009, January 16-18, IIT Guwahati 342

with,

wb 2
L−Q+1(j) = [wb

Q(j) wb
Q+1(j) · · ·wb

L(j)]t. (26)

• Next, the termyb 1,2
Q (jQ+Q− 1) in (20) is evaluated in

BFP as

yb 1,2
Q (jQ+Q− 1) = yb 1,2

Q (jQ+Q− 1)2νj−1+ψj , (27)

where,

yb 1,2
Q (jQ+Q− 1) = W

b 2

Q,Q−1dQ−1(jQ− 1) (28)

.
• Using above, (21) is then computed in BFP as

yc
Q(jQ+Q− 1)=yf

Q(jQ+Q− 1)2γi+ψj

+[yb 2
Q (jQ+Q− 1)

+yb 1,2
Q (jQ+Q− 1)] 2νj−1+ψj (29)

=yc
Q(jQ+Q− 1) 2θj+ψj ,

where, the mantissayc
Q(jQ+Q− 1) andθj are evaluated

as,
if γi > νj−1

yc
Q(jQ+Q− 1)=yf

Q(jQ+Q− 1) + [yb 2
Q (jQ+Q− 1)

+yb 1,2
Q (jQ+Q− 1)] 2νj−1−γi ,

θj = γi,

else

yc
Q(jQ+Q− 1)=yf

Q(jQ+Q− 1)2γi−νj−1

+yb 2
Q (jQ+Q− 1) + yb 1,2

Q (jQ+Q− 1),
θj = νj−1.

It is easy to verify that|yc(jQ+ r)| < 1/2.
• As explained above, the solution for correctdQ(jQ+Q−
1) is obtained iteratively. Assume that at eachk-th step of
iteration, 0 ≤ k ≤ Q, the k-th iterate fordQ(jQ + Q −
1), namely,dk

Q(jQ + Q − 1) is available in a BFP form as

dk
Q(jQ+Q−1) = d

k

Q(jQ+Q−1)2τk,j with |dk

Q(jQ+r)| <
2−S

′
min , r ∈ ZQ. The iteration steps are then as follows:

The initial condition for the iteration is set as:d
0

Q(jQ+Q−
1) = 0Q, τ0,j : a large negative number. Then, for anyk,
0 ≤ k < Q, evaluate (19) as

yb 1,1,k
Q (jQ+Q− 1)=W

b 1

Q,Q(j)d
k

Q(jQ+Q− 1) 2τk,j+ψj

≡yb 1,1,k
Q (jQ+Q− 1) 2τk,j+ψj .

• Thek-th iterate of the pre-decision outputyk
Q(jQ+Q−1),

as per (22) is then obtained as

yk
Q(jQ+Q− 1)=yc

Q(jQ+Q− 1) 2θj+ψj

+yb 1,1,k
Q (jQ+Q− 1) 2τk,j+ψj (30)

=yk
Q(jQ+Q− 1) 2ξj+ψj .

Where,
if θj > τk,j

yk
Q(jQ+Q− 1)=yc

Q(jQ+Q− 1)

+yb 1,1,k
Q (jQ+Q− 1)2τk,j−θj , ξj = θj ,

else

yk
Q(jQ+Q− 1)=yc

Q(jQ+Q− 1)2θj−τk,j

+yb 1,1,k
Q (jQ+Q− 1), ξj = τk,j .

It is easy to verify that|yk(jQ + r)| < 1
2 , r ∈ ZQ, where,

yk(jQ+ r) = [JQ yk
Q(jQ+Q− 1)]r. Substitutingyk

Q(jQ+
Q−1) in (2), the(k+1)-th iteratedk+1

Q (jQ+Q− 1) is then
obtained, which is subsequently block formatted in order to be
represented asdk+1

Q (jQ+Q−1) = d
k+1

Q (jQ+Q−1) 2τk+1,j .
• If for any k, 0 ≤ k < Q, dk+1

Q (jQ + Q − 1) ≡ dk
Q(jQ +

Q− 1), then convergence is reached, meaning thatdQ(jQ+
Q−1) = dk

Q(jQ+Q−1), i.e., the iteration can be terminated
andyQ(jQ+Q− 1) in (3) can be taken asyk

Q(jQ+Q− 1).
The iteration is guaranteed to converge inQ or less number
of steps [5].
• Once the iteration converges , say, ink steps, the two vectors,
dQ(jQ + Q − 1) = dk

Q(jQ + Q − 1)2τk,j and dL(jQ −
1) = [dj−1(jQ−1), · · · , dj−1(jQ−L)]2νj−1 are to be jointly
block formatted to produce[dj(jQ + Q − 1), · · · , dj(jQ −
1), · · · , dj(jQ − L)] 2νj , for use during weight updating and
also during processing of the(l + 1)-th sub-block.
(c) Error : The error vectoreQ(jQ+Q− 1) as given by (3),
is computed as

eQ(jQ+Q− 1)=dQ(jQ+Q− 1)− yQ(jQ+Q− 1)
=dQ(jQ+Q− 1)2νj

−yQ(jQ+Q− 1)2ξj+ψj ,

where,
ξj = max{γi, νj−1, τk,j}, (31)

with k denoting the iteration index at convergence. Note
that on convergence,τk+1,j ≡ τk,j and thus, νj =
max{νj−1, τk+1,j} = max{νj−1, τk,j}, meaningξj ≥ νj .
Thus

eQ(jQ+Q− 1)=[dQ(jQ+Q− 1)2νj−ξj−ψj

−yQ(jQ+Q− 1)]2ξj+ψj

=eQ(jQ+Q− 1)2ξj+ψj ,

where,

eQ(jQ+Q−1) = dQ(jQ+Q−1)2νj−ξj−ψj−yQ(jQ+Q−1)
(32)

Using the fact that|y(jQ + r)| < 1/2, r ∈ ZQ, it is easy to
verify that |e(jQ+ r)| < 1.
(d)Weight updating: For updatingw(j), we first try to express
wf

M (j + 1) and wb
L(j + 1) as wf

M (j + 1) = uf
M (j)2ψj

and wb
L(j + 1) = ub

L(j)2ψj for some appropriateuf
M (j) =

[uf
0 (j), · · · , uf

M−1(j)]
t and ub

L(j) = [ub
1(j), · · · , ub

L(j)]t that
are constrained as|uf

m(j)| < 1, |ub
l+1(j)| < 1, m ∈

NCC 2009, January 16-18, IIT Guwahati 343

ZM , l ∈ ZL. Then, if eachuf
m(j) and eachub

l+1(j) lie within
± 1

2 , we make the assignments:

w(j + 1) = [uf
M (j) ub

L(j)]t, ψj+1 = ψj . (33)

Otherwise, we scale downuf
M (j) andub

L(j) by 2, meaning,

w(j + 1) =
1
2
[uf

M (j) ub
L(j)]t, ψj+1 = ψj + 1. (34)

SubstitutingXQ,M ,DQ,L andeQ(jQ+Q−1) in (4) and (5) by
XQ,M2γi , DQ,L2νj andeQ(jQ+Q− 1)2ξj+ψj respectively,
we can write,

uf
M (j) = wf

M (j) + µΣQ−1
r=0 xM (jQ+ r) e(jQ+ r)2γi+ξj ,

(35)
and

ub
L(j) = wb

L(j) + µΣQ−1
r=0 dL(jQ+ r − 1)e(jQ+ r)2νj+ξj .

(36)
Since|wf

m| < 1/2, m ∈ ZM and |wb
l+1| < 1/2, l ∈ ZL, it is

enough to have
(A) µΣQ−1

r=0 |xM (jQ+ r −m)| |e(jQ+ r)|2γi+ξj ≤ 1
2 ,

(B) µΣQ−1
r=0 |dL(jQ+ r − l − 1)| |e(jQ+ r)| 2νj+ξj ≤ 1

2 ,
in order to satisfy|uf

m(j)| < 1, m ∈ ZM and |ub
l+1(j)| < 1,

l ∈ ZL respectively. Now, forr ∈ ZQ,

|e(jQ+ r)| 2ξj+ψj≡|e(jQ+ r)|
≤|d(jQ+ r)| 2νj + |y(jQ+ r)| 2ξj+ψj

≤2νj−S
′
min + |y(jQ+ r)|2ξj+ψj .

Again,

|y(jQ+ r)| 2ξj+ψj≡|y(jQ+ r)|
≤|yf (jQ+ r)| 2γi+ψj

+|yb(jQ+ r)| 2νj+ψj

≤M
2

2γi+ψj−Si +
L

2
2νj+ψj−S

′
min ,

meaning

|e(jQ+ r)| 2ξj+ψj ≤ 2νj−S
′
min [1 +

M

2
2γi+ψj−Si +

L

2
2ψj].
(37)

Substituting (37) in (A) and noting that|xM (jQ + r −
m)| 2γi < 2exi , it is then sufficient to have,

µ ≤ 1

Q[2exi+νj−ψj−S
′
min

+1 +M22exi + L2exi+νj−S
′
min]

(38)
From above, we obtain a general upper bound forµ by
equatingνj to its highest value ofβ + 1 + S

′
min, ψj to

its minimum value of zero, and replacingexi by exmax =
max{exi|i ∈ Z}. The general upper bound is given by:

µ ≤ µf =
1

Q[2exmax+β+2 +M22exmax + L2exmax+β+1]
(39)

Similarly, from (37), condition (B) and recalling thatdL(jQ+
r − l − 1)| < 2−S

′
min , l ∈ ZL, the general upper bound for

FBF can be obtained as

µ ≤ µb =
1

Q[22 β+3 +M 2exmax+β+1 + L 22 β+2]
(40)

The final choice ofµ will be made following µ ≤
min{µf , µb}. The two bounds,µf and µb are easily seen
to be related by a simple constant, i.e.,µf

µb = 2exmax−β−1 .

III. C OMPLEXITY ISSUES

The proposed schemes rely mostly on FxP arithmetic,
resulting in computational complexities much less than that
of their FP-based counterparts. In the following, we provide a
comparative account of both the approaches in terms of com-
plexity. Consider the computation of the FFF output mantissa
at anyn-th (n = jQ + r, r ∈ ZQ index, as given by (9).
Clearly, in the proposed treatment, this requiresM “Multiply
and Accumulate (MAC)” operations (FxP) and at the most,
one exponent addition operation to compute the exponent
γi + ψj . In contrast, in a FP-based realization, this would
require M FP-based MAC operations. Table I provides a
comparative account of the two approaches in terms of number
of operations required per iteration. It is easy to verify from
Table I that given a low cost, simple FxP processor with single
cycle MAC and barrel shifter units, the proposed scheme is
about four times fasterthan a FP based implementation, for
moderately large values ofM , L andQ.

TABLE I

A COMPARISON BETWEEN THEBFP VIS-À-VIS THE FP-BASED

REALIZATIONS OF THE BLOCK ADFE. NUMBER OF OPERATIONS

REQUIRED PER ITERATION FOR(A) WEIGHT UPDATING, AND (B)

FILTERING ARE SHOWN. [R = L+M , T = R+ 2Q(I + 1), MAC :

MULTIPLY AND ACCUMULATE, MC : MAGNITUDE CHECK, EC :

EXPONENT COMPARISON, EA : EXPONENT ADDITION .]

(a) MAC Shift MC EC EA
BFP (R + 2)Q P + 3Q + 1 R Nil 2

FP (R + 1)Q 2(R + 1)Q Nil (R + 1)Q (R + 1)Q

(b) MAC Shift EC EA Add
BFP R + QI Q(2I+3)+L-I-1 QI+2 I + 3 Q(3 + I)

FP T 2(T + Q) (T + Q) 2T + Q) Q

REFERENCES

[1] K. Kallioj ärvi and J. Astola, “Roundoff Errors in Block-Floating-Point
Systems, ”IEEE Trans.Signal pocessing, vol. 44, no. 4, pp. 783-790,
April 1996.

[2] A. Mitra, M. Chakraborty and H. Sakai, “A Block Floating Point
treatment to the LMS Algorithm: Efficient realization and roundoff error
analysis”,IEEE Trans. Signal Processing, pp. 4536-4544, Dec. 2005.

[3] M.Chakraborty, R. Shaik and Moon Ho Lee, “A Block Floating Point
Realization of the Block LMS Algorithm”,IEEE Trans. on Circuits
Syst., part II, Vol. 53, no. 9, pp. 812-816, September 2006.

[4] R. Shaik and M. Chakraborty, “An Efficient Finite Precision Realization
of the Adaptive Decision Feedback Equalizer”, in Proc.2007 IEEE In-
ternational Symposium on Circuits And Systems (ISCAS), New Orleans,
USA, May. 2007, pp. 1341-1344.

[5] K Berberidis and P Karaivazoglou, “An efficient block adaptive decision
feedback equalizer implemented in the frequency domain,”IEEE trans.
Signal Processing, vol. 50, No. 9, pp. 2273-2285, Sept. 2002.

[6] Oppenheim, A. V., and R. W. Schafer,Discrete-Time Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989.

[7] D. Elam and C. Lovescu, “A Block Floating Point Implementation for an
N-Point FFT on the TMS320C55X DSP”,Texas Instruments Application
Report, SPRA 948, Sept., 2003.

[8] S. Haykin,Adaptive Filter Theory, Englewood Cliffs, NJ: Prentice-Hall,
1986.

NCC 2009, January 16-18, IIT Guwahati 344

