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Abstract—Recently, a block based adaptive decision feedback fact sought to be evaluated by the ADFE. In [5], an iterative
equalizer (ADFE) is presented which first uses an iterative scheme scheme is presented that evaluates the block of unknown
to evaluate a block of unknown decisions. FFT based block gecisions requiring only a few iteration steps. Computations
processing is then used on the received input block and the . . . . .
decision block to carry out the block ADFE operation. A direct Within the iteration are block based and thus can be realized
floating point (FP) based realization of this scheme, however, Using FFT. Once the decisions are known, usual FFT based

pushes up the cost and complexity of processing hugely, as eachblock processing techniques are applied to carry out the ADFE

FP operation involves several additional steps not present in its operation.

fixed point (FxP) counterpart. To overcome this problem, a block

floating point (BFP) based treatment is presented in this paper

for ‘real_iz.ation of _the b‘|OC|< ADFE‘. The proposed scheme, while In a practica| communication system, the input to the

maintaining FP like high dynamic range, deploys mostly FxP o0 qjizer is in floating point (FP) form, caused by the need to

operations and thus reduces the processing cost and complexity . . ; . . .

substantially. amplify the weak, received signal with fluctuating signal level,
by a programmable gain amplifier (PGA) that adjusts its gain

|. INTRODUCTION continuously (by a power of two) for maximal utilization of

The adaptive decision feedback equalizer (ADFE) is a{ne ADC dynamic range. A FP based processing, however,

effective means for equalizing channels that exhibit spectlr(%llIISheS up the cos_t and gomplexny of processing enormously,
as computations in FP involve several additional steps not

nuII.s and / or ha}s a long impulse response (IR) giving rlseesent in fixed point (FXP) computations. In this paper, we
to inter-symbol interference over a very large number . : . :

. i . . - 1ackle this problem, by presenting a block floating point (BFP)
symbol periods. The linear equalizer is not a very effective

L . treatment to the finite precision realization of [5]. In BFP,
option in such cases, due to the possibility of substantial . .

. a_common exponent is assigned to a block of data. As a
noise enhancement and also due to a very large order re-

quirement. The ADFE consists of a feed forward filter (FFI’—reXSFl)J I;’ ((:a?;nti% L::Satl\?v?ﬁlénvg\slg?c;hgffhga;i rc?r?:rllrten?;ilrlyt:ilr?;ptlﬁe
and a feedback filter (FBF). The FFF, working directly on P ! P P

the received data, tries to equalize the anticausal part of %swed high dynamic range. In recent years, the BFP format

. . as been used extensively for efficient realization of various
channel impulse response. The residual ISI at the FFF outpu - L
. : s orms of digital and adaptive filters ([1]-[4]). The proposed
is then canceled by passing the past decisions through an ) :

. . . tr?atment uses the philosophy of [3] and being based largely
appropriately designed FBF and subtracting the FBF outpun FxP operations, achieves considerable speed up over a FP
from the FFF output. Both the FFF and the FBF coeﬁiciengs perat ' P P

. : . i : ased realization of [5].
are trained by some suitable adaptive algorithm. In this paper,
we consider the simple LMS [8] based ADFE.

A common problem faced by the ADFE is that with increas- Throughout the paper, we follow the same notation as used
ing data transmission rate, the channel IR length increases and5], namely, byz(n) we denote a scalar quantity at time
thus the order of both the FFF and the FBF increases. Tinstantn, whereas by,,(n), we denote either &/ x 1 filter
resulting increase in complexity makes the real time operationefficient vector at index, or, a data vectoe [z(n) z(n —
of the ADFE difficult, specially in view of simultaneousl)---z(n— M +1)]* with z(n) denoting the data input at the
shortening of the symbol period. Block processing [6] is one elirrent indexn. In addition [x] ¢irst.¢ and [x].st. indicate
the approaches to reduce complexities in digital filters, as thespectively the first) and last@Q elements of the vectax
block based computations like convolutions and correlatioasid X, denotes a matrix af/ rows andN columns. If the
can be implemented using FFT. However, the idea of blockatrix is square, then the simpler notati&n, is used instead
processing can not be applied directly to the ADFE, sincef X, as. The notationX,, is used to denote af/-length
while block processing of the FFF input, i.e., received datolumn vector in the frequency domain. Finally, characters
is possible as these are known a priori, same is not true feith an overbar are used to indicate mantissas dpgd for

the FBF input, i.e., decisions, which are unknown and are &my integer, M > 0 denotes the sef0,1,---, M — 1}.
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II. IMPLEMENTATION OF BLOoCK ADFE
Consider the block ADFE [5] that takes(n), n € Z as

the input and updates the equalizer weights once per bIockaf e, N =
size Q. For the j-th block, the ADFE operation is given by

the following block formulated set of equations:

Yo (jQ + Q — )=Xq.n wi;(j) + Dg. wh (), 1)
do(jQ +Q — )=Ff{yq(iQ +Q - 1)}, 2
ee(jQ +Q — )=do(jQ + Q — 1) — yo(jQ + Q — 1)(3)
Wi (G + D)=wl,(j) + n XZ 1 e(iQ + Q — 1), (4)
wi(j+1)=w(j) + nD§ 1 eq(iQ+Q —1). (5)
Where,

r(jQ+Q —1) r(jQ+Q — M)
Xom = : : ,
z(jQ) r(jQ — M +1)
DQ,L = [Dé),Q—l DQQ,L—Q-H]’
with
d(jQ +Q —2) d(jQ)
Dgq-1= : E ,
d(ijQ — 1) d(jQ@ —Q+1)
and
d(jQ —1) d(jQ —L+Q—1)
D41-gn = : :
d(jQ — Q) d(ijQ — L)

In (2), f{.} is aQ-dimensional decision device in which th

distance between its input and discrete output is minimum
the Euclidean sense. Also, the FBF ordeis assumed above
to be greater tha® (cases wherd. < @ form a special case

of the proposed treatment).

In the proposed scheme, the equalizer weight vectQr

w(j) = [wl/(j) wht(j)]* is represented in a BFP form
as :

w(j) = Wi/ () W) 2%, (6)
where
Wi () = [@ () i) wh, () )
and
Wi () = [} (5) ws(j) - wh ()] ®)

are the mantissa vectors for the FFF and the FBF respectivg]%

for the j-th block. The integer); is a time-varying block

exponent which needs to be updated at each block inde

and is chosen to ensure that/, (j)| < % for m € Zy; and
W}, (4)| < 2 forie zy.

The Proposed Implementatioiihe proposed BFP treatment
to the block ADFE consists of three stages that are mutuaﬂy

pipelined namely,

(i) Buffering: Here, the input sequence(n) is partitioned
into non-overlapping blocks of lengtiv each, with thei-
th block given by{z(n)|n € Z}, where Z! = {iN,iN +

e

X

1,...,iN + N — 1}, i € Z. For this, the input is shifted into

a buffer of sizeN. We takeN to be an integer multiple of
K@, K € Z, meaning that in each block of
size N, the equalizer weights are updat&dtimes. Also, we
chooseN > M — 1, as otherwise, the input vectot(n)
may involve data from three or more adjacent blocks and thus
the complexity of implementation would go up. The buffer is
cleared and its contents transferred to a block formatter once
in every N input clock cycles.

(i) Block formatting of inputHere, the data samples(n)
constituting the-th block,: € Z and available in FP form, are
block formatted as per [3], resulting in the BFP representation
cxz(n) = ZT(n) 27, n € Z! wherey; = ex; + S;, ex; =
llogaM; | + 1, M; = maz{|z(n)| | n € Z}. Next within the

i-th block, consider thé-th sub-block,! = 0,1,---, K — 1,
given by the index setj@ + r, r = 0,1,---,Q — 1, where

j = iK + 1. For thel-th sub-block, the FFF output vector
yg(jQ +Q — 1) is then given as

YHGQ+Q - 1) = Xo.uwi; (), 9)
j = K + 1. Assuming that each element &fy 5, belongs

to thei-th block, we can expresﬁé(jQ +Q—1)inaBFP
form as

YL(Q+Q—1) = ¥L(iQ+Q—1) 27,
where

(10)

Y5(Q+Q—1) = Xq.u Wi (5) (11)

. denotes the FFF output mantissa vector foritfie sub-block.

For no overflow in?g(jQ + Q@ — 1), it is required that
each elementy/ (jQ + r)| < 1,r € Zg. However, in the
proposed scheme, we restrict eaghjQ +r),r € Zg to lie
l!)rétween—ki and —%. From [3] and also from the fact that
[w!l,(n)] < %, m € Zy;, this implies a lower limit of S as
Smin = [log22M . However, whileS,,,;,, provides the lower
limit of .S;, the actual value af; is, in fact, chosen to ensure a

iform BFP representation &f(n) during the block-to-block

&ransition phase as well, i.e., when partgf) comes from the

i-th block and part from théi — 1)-th block. This is realized
by using the exponent assignment algorithm proposed in [2]
and by rescaling the lagtM — 1) elements of the previous
block, namely,x(iN — M + 1),---, z(iN — 1), by dividing
the respective mantissas B§”:, whereA~; = v; — vi_1.

(iii) Equalization and weight updatingThis consists of four
main computations, namely,

FFF output: The block formatter input&(n), n € Z,
rescaled mantissas fafiN — k), k = 1,2,...,M — 1
and the block exponent; to the FFF, which computes the
output exponent for théth sub-block,y; + v, j = iK +1,
l=0,1,---, K — 1, and the output mantissa vector as given
by (10), using overlap-save method [6], FFT (denoted 5Y *
nd IFFT (denoted byF—!"), as

YHUQ+Q 1) = Jg[F ' (Keus Whlaso  (12)
where,S =M +Q — 1,
Wi = F(Whi() 05 ") (13)
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and Note that computation in (17) and (20) are simple convo-
—d _ - - . lutions involving known decisions and thus can be realized
Xgxs = diag(F([z(jQ+Q—9)---T(jQ+Q—1)")). (14) efficiently using overlap and save method/FFT. Now let

The matrixJg in (12) is the so-called exchange matrix, the y§(jQ + Q — 1):yé(jQ +Q-1)+yy(jR+Q-1)
FFT/IFFT in (12-14) |ts_elf is realized using BFP [7], where +yb1,2(jQ+Q 1) 1)
each butterfly computation is based on FxP operation only and Q
up/down scaling is employed between the different butterfly
stages to prevent overflow and also to use the dynamic rangdhen,
maximally. yo(iQ+Q—1) = y4(jQ+Q-1)+y5" (jQ+Q—1). (22)

(b) FBF output: Unlike the FFF, the computation of the o ) @ L )
FBFWCIOI}’%(jQ +Q—1) = Dg., wh(j) contains Clegrly, yo(iQ + Q — 1) is the deter_mmlstlc component in _
unknown decisions in the matrig 1, as given byd(k), yQ(jQ+Q—1), as it depends on available data and past deci-
k= jQ.-,jQ + Q — 2. To avoid this causality problem, Sions only, whereag;() (jQ + Q — 1) is the non-deterministic
we adopt the approach of [5], where the computation §PMPonent which involve the unknown decisions.
y%(jQJrQ— 1) is systematically decomposed into two parts: In [5], an |terat|v_e procedl_Jre is suggested Wh|ch_ first
one containing past and thus known decisions, and the otf¥pluates (19) (in time domain) by using an appropriately
involving purely the current and thus unknown decisions. FGROSen initial value forlg (jQ + @ — 1) and then, computes

this, we first rewrite the FBF outpyt’, (Q + Q — 1) as vo(jQ+Q—1) as per (22), which is then used in (2) to obtain
@ the first iterate fordg (jQ+Q—1). This is again substituted in

y% (GQ+Q— 1):D227L7Q+1W%27Q+1(j) (17) and the iteration is carried out further. It is shown [5] that
L (j)dso1(jQ + Q — 1) (15) t[hIS iteration converges to the correct vgato(jQ + Q.— 1)

@20-11/%20-11 in @ or less number of steps for any choice of the initial value.

where, Wg 20-1(j) is a convolution matrix with the first A simpl(_a choice is to set t.he in.itial decision vector to thg zero

row given as 0 wi(j) - ~wa,1(j) 0---0] and any m- vector, i.e., we start the iterative procedure by replacing the

th row, m > 2 given by m right shift of the first Unknown decisions iDg 1 with zeros.

row. The vectorw}? . (j) is given by wi2 ., (j) = bUnllke the ;:FE BFP Cz?mpuia%m Cibthf?T';BF O:JdtpUt
[ (7) wha () - wh () Yoli@ +Q = 1) = Da.r wilj) = Do wi(j)2% wou
gartitio?;n W (j) as require block formatting of the decision matiX; ; for each
9% a201U I-th sub-block,l = 0,1,---,K — 1, within the i-th block.
W8 oo 1 (5) = [WEL () WE2, ()], However, like the FFF, the FBF output is also constrained to
Q,2Q 1) =1 Q,Q(J) Q,Q 1(7)] satisfy|yb(jQ+7‘)| < %' r=01,---,Q—1, j =iK +1,
the FBF output can be written as where7(jQ + r) denotes the mantissa gf (jQ + ). The

b ) bo ‘ correspondipg scaling factor, s&y, is then required to satisfy
yoURQ+Q—-1)=Dg 1 Wi ¢1(J) S > S,... = [logs2L]. For minimum loss of bits,
+W5}Q(j)dQ(jQ+Q— 1) we chooses’ = S, . . Now if the decisionsd(n),n € Z
b2 . . generated by the quantizer are represented(Bylsign) bit
o o1()de1 (@ —1). (16) £ g numbers, right shift by, . may, howeve(fyresult)in the
wheredg (jQ+Q—1) = [d(jQ+Q—1)---d(jQ)]* contains loss of many significant bits, or, even flushing of the register
the Q unknown decisions and,_;(jQ — 1) = [d(jQ — 1O zero, for small values ofd(n)|. To avoid this, we first
1)---d(jQ — Q + 1)]* contains@Q — 1 known decisions from assume that the discrete levels of the quantizer are stored
previous sub-blocks. Next, we group three terms on the R.H&a normalized, scaled format, meaning that the output of
of (15) into two categories, namely, FB2 output given as, the quantizer, as per (2), is a length-decision vector in
normalized FP form. The decision vector is subsequently block
YR (iQ+Q—1)=D% 1 o1 Wi%o.1(j), (17) formatted with scaling factos = S/, . Computation of
y5(jQ + Q — 1) in BFP then proceeds as follows:
e Assume that the past decisions present in the decision matrix

YO UQ+Q = 1)=Wh oo 1(j)d2g1(iQ+Q 1)  (18) é’gﬁ,ﬂor;;m;s'y'd(’@ = ;e d(j@ — L) are available in a
=y4 'R+ Q- 1) +y,*(iQ+Q — 1)

and FB1 output given as,

d(ijr):Ejfl(ijr)QVj_lrr:1727"'7L7 (23)

h _ /
where with [d;_1(jQ — 7)| < 27Smin. Then, (17) is evaluated as
b1,1, . oy bl (s . _ ) b2, ” ;
vo (IR+Q—-1)=W35,()de(jR+Q—1) (19) YRUQ+Q —1) = VIR(jQ +Q — 1)2-1+i  (24)
and where, the mantissa vect§t,’(jQ + Q — 1) is given as,

YZQLQ(J'Q +Q-1)= sz?@—ﬂj) do1(j@—-1) (20) ?%2(30 +Q-1)= EQQ,L—QHW%%QH(J')’ (25)
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with, Where,
— N b gy — N if 05 > T
W12 o (0) = [0 (1) Woir () - @y (7)) (26) ’ ’

o Next, the termyb1 2(jQ +Q — 1) in (20) is evaluated in
BFP as

Vo 2R+ Q- 1) =547 (Q+Q — 1)2v ¥, (27)
where,
YRR+ Q1) =Wao 1do1(jQ-1)  (28)
' e Using above, (21) is then computed in BFP as
yo(iQ + Q — 1)=yL(jQ + Q — 1)27 s
+yGUR+Q—1)
LR (Q + Q — 1)) 2 (29)

=¥5(iQ +Q —1)2% ¥,

where, the mantissgf, (jQ + Q — 1) andd; are evaluated
as,
if v > vj—1
¥5(Q+Q - 1)=y5(iQ+Q - 1)+ [F(jQ+Q 1)
+747(Q +Q — 1) 27 7,
0; =i,

else

YH(Q+Q - 1)=y5(jQ+Q—1)2" ¥
YRR+ Q- 1) +54 (R +Q - 1),
9]' =Vj_1.
It is easy to verify thaty°(jQ + )| < 1/2.
e As explained above, the solution for correty (;Q + Q —

1) is obtained iteratively. Assume that at eaktth step of
iteration, 0 < k < @, the k-th iterate fordg(jQ + @ —

1), namely,df,(jQ + @ — 1) is available in a BFP form as

. =k . ok

d6(jQ+Q—1) = do(jQ+Q—1)27 with |dg (jQ+7)| <
2~ 5 , T € Zg. The iteration steps are then as follows:

The |n|t|al condition for the iteration is set adQ (JR+Q—

1) = 0q, 70,; : a large negative number. Then, for ahy
0 <k < @, evaluate (19) as
Yo Q@+ Q = )= Wi () dg(iQ + Q — 1) 27+
S +Q - 12t
o The k-th iterate of the pre-decision outpyf, (jQ+Q 1),
as per (22) is then obtained as
yoUQ +Q —1)=y4(jQ +Q — 1) 2%+

+75 (1@ + Q = 1) 2 (30)
=y5(iQ +@Q — 1) 255,

7(iQ+7) =

Yo(iQ+Q - 1)=y5(jQ+Q - 1)

HYLIRGQ 4 Q — )20, ¢ =6,
else
TH(Q+Q - D=y5(iQ + Q — 1)2% ™
+y221 YRUQ+Q 1), & =y

It is easy to verify thaty"(jQ + r)| < %, r € Zg, where,
[Jo¥6(iQ +Q —1)],.. Substitutingy?, (jQ +
Q1) in (2), the(k +1)-th iterated;™ (jQ +Q — 1) is then
obtained, which is subsequently block formatted in order to be
represented ady"! (jQ+Q—1) = HZH(JQ‘FQ—l) QTh+1j |
olfforany k, 0 <k <@ d5™(jQ+Q—1) = d(jQ +

@ — 1), then convergence is reached, meaning thatjQ +
Q—1) =d§(jQ+Q—1), i.e., the iteration can be terminated
andyq(jQ+Q — 1) in (3) can be taken agf, (jQ + Q — 1).
The iteration is guaranteed to converge@nor less number
of steps [5].

e Once the iteration converges , saykisteps, the two vectors,
do(iQ +Q — 1) = d ( JQ +Q — 1)2% and d.(jQ —
1) =[dj-1(jQ—1),---,d;—1(jQ—L)]2¥-* are to be jointly
block formatted to produc¢dJ(JQ +Q—1),--,d;(jQ —
1),---,d;(jQ — L)] 2%, for use during We|ght updating and
also during processing of thg + 1)-th sub-block.

(c) Error : The error vectoeg (j@Q + Q — 1) as given by (3),
is computed as

eQ(IR+Q-1)=do(jR+Q—-1)—yo(iR+Q—-1)
=do(jQ +Q —1)2%
~¥o(iQ+Q — 1)25+¥s,

where,
& = max{vi, Vj—1, Tk}, (31)

with k& denoting the iteration index at convergence. Note
that on convergencesy.i ; Tr,; and thus, v;
maz{v;_1,Tkt1,;} = max{vj_1, 7}, meaningé; > v;.
Thus

eQ(iQ +Q —1)=[do(jQ +Q — 1)2" %%
~Yo(iQ+Q — 1251
=6 (jQ + Q — 1)25TYs,
where,

8(jQ+Q-1) = do(jQ+Q—1)2" 5" -y, (jQ+Q—1)
(32)
Using the fact thaty(jQ + )| < 1/2, r € Zg, it is easy to
verify that [e(jQ + )| < 1.
(d)Weight updating For updatingw(j), we first try to express
wl,(j + 1) and WL(' +1) aswl,(j+1) = j[(j )2%i
and wh (j + 1) = w4 (j)2% for some approprlatelM(y) =
@) (5), -y (7)) and @y () = [@)(4), - -, ah ()] that
are constrained a&i/,(j)| < 1, [@,(j)] < 1, m €
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Zw, L€ Zi,. Then, if eachi/, (j) and eachi} , (j) lie within - The final choice of will be made following <
+1, we make the assignments: min{u’, pb}. The two boundsu/ and u’ are easily seen
. —f i —by. to be related by a simple constant, i.&5 = 2¢¥maez—s-1,
Wi+ 1) = [0, () RO, v =1 (33) y asimp

Otherwise, we scale dowﬁfu(j) anda! (4) by 2, meaning,

Wi+ 1) = Sl G) WO v =+l ()

SubstitutingX g, ar, Dg,1. andeg (jQ+Q—1) in (4) and (5) by
Xo.m2%, Do 12" andeg(jQ + Q — 1)25+¥i respectively,
we can write,
wl, () =W, () + SR = (GQ + 1) E(Q + )2 Y,
(35)
and

uj,

(7) = W) + =P dL(Q + r — 1e(jQ +r)2" e,
(36)

Since[w/,| < 1/2, m € Zy and|w}, || < 1/2,1 € Zy, itis

enough to have

(A) 1220 [T (GQ + 7 — m)| [e(jQ + r)[27+8 < 3,

(B) nS75 [de(jQ +r — 1 = 1| [e(jQ +7)| 2948 < 3,

in order to satisfyju/, (j)| <1, m € Zy and[u},,(j)| < 1,

l € Zy, respectively. Now, for € Zg,

€(GQ + 1) 29 =le(jQ + 1))
<[d(jQ + )2 + [g(jQ +r)| 29+
<Y~ Smin 4 7(Q + 7»)|25j+wj.
Again,

[G(GQ + 1) 29 Y=y (jQ + 1)
<[y (jQ +r)[ 27

HY'(GQ + )| 2
S% it —=Si 4 §2Vj+wj*51nin

)

meaning

/ M L
[e(jQ +7)| 285¥i < 2V Smin[1 4 — 2V Ft¥i=8 L = o¥a],
2
(37)
Substituting (37) in (A) and noting thatzy(jQ + r —
m)| 27 < 2¢%i | it is then sufficient to have,
1

Q[Qewi—}—uj—wj—sinm-ﬁ-l+M226$1 +L2€l‘i+Vj—S;nM& )

8
From above, we obtain a general upper bound foby
equatingv; to its highest value of8 + 1 + S,,,,,, ¥; to
its minimum value of zero, and replacing:; by expue =
maz{ex;|i € Z}. The general upper bound is given by:
1

Q[2€x7nacc+ﬁ+2 + M22€Tmaz 4 L2€‘73mu.m+ﬁ+l]
(39
Similarly, from (37), condition (B) and recalling thdg (jQ +

<

_

ps

r—1—1)| < 27 [ € Z;, the general upper bound for [7]

FBF can be obtained as
1

bo_
B = Q[225+5 1 M 26mman+0+1 | [ 225+2] (40)

IIl. COMPLEXITY ISSUES

The proposed schemes rely mostly on FxP arithmetic,
resulting in computational complexities much less than that
of their FP-based counterparts. In the following, we provide a
comparative account of both the approaches in terms of com-
plexity. Consider the computation of the FFF output mantissa
at anyn-th (n = jQ +r, r € Zg index, as given by (9).
Clearly, in the proposed treatment, this requifés‘Multiply
and Accumulate (MAC)” operations (FxP) and at the most,
one exponent addition operation to compute the exponent
vi + ;. In contrast, in a FP-based realization, this would
require M FP-based MAC operations. Table | provides a
comparative account of the two approaches in terms of number
of operations required per iteration. It is easy to verify from
Table | that given a low cost, simple FxP processor with single
cycle MAC and barrel shifter units, the proposed scheme is
aboutfour times fasterthan a FP based implementation, for
moderately large values df/, L and Q.

TABLE |
A COMPARISON BETWEEN THEBFP VIS-A-VIS THE FP-BASED
REALIZATIONS OF THE BLOCK ADFE. NUMBER OF OPERATIONS
REQUIRED PER ITERATION FOR(A) WEIGHT UPDATING, AND (B)
FILTERING ARE SHOWN [R =L+ M, T = R+ 2Q(I + 1), MAC :
MULTIPLY AND ACCUMULATE, MC : MAGNITUDE CHECK, EC :
EXPONENT COMPARISON, EA : EXPONENTADDITION.]

MAC
(R+2)Q
(R+1)Q

MAC

R+ QI
T

Shift
P+4+3Q+1
2(R+1)Q
Shift
Q(2143)+L-1-1
2(T + Q)

MC
R
Nil
EC
Q2
(T + Q)

EC EA
Nil 2
(R+1)Q | (R+1)Q
EA Add
143 QB +1I)

2T + Q) Q

(@)
BFP
FP
(b)
BFP
FP
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