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Abstract— We report the construction and operation of a novel 
chaotic electronic oscillator for which a detailed model admits 
an exact analytic solution. The circuit is modeled by a hybrid 
dynamical system including both a differential equation and 
discrete switching condition. The analytic solution is written as 
the linear convolution of a symbol sequence and a fixed basis 
pulse, similar to that of conventional communications 
waveforms. Waveform returns sampled at the switching times 
are shown to be conjugate to a chaotic shift map, effectively 
proving the existence of chaos in the circuit. We show the 
analytic solution can be used to accurately reconstruct a 
measured chaotic waveform, thereby confirming the efficacy of 
the exactly solvable circuit model. 

I. INTRODUCTION 

It is commonly assumed that the complexity of chaos 
precludes straightforward analytic solution. However, this is 
not necessarily true [1-2]. For difference equations, it has been 
explicitly shown that trajectories of the shift map and baker’s 
map can be written as the convolution of a random process 
and an acausal basis pulse [3]. A similar construction is 
available for analogous continuous-time waveforms [4-6]. Yet 
in some sense, these toy systems are of limited practical 
interest, since they are not an accurate model for any observed 
physical system. 

In this paper, we report the construction and operation of a 
novel chaotic electronic oscillator circuit for which a detailed 
model admits an exact analytic solution. The oscillator is a 
hybrid circuit, in that it contains both analog and digital 
components. A mathematical model of the circuit contains a 
second order differential equation coupled to a switching 
condition that controls a binary state. Importantly, the model 
admits an exact analytic solution, which is written as a linear 
convolution of binary logic symbols and a fixed basis pulse. 
Successive returns in the analog state at the discrete transition 
times are shown to exactly satisfy a shift map, thereby proving 
the oscillator is chaotic. 

In operation, the electronic circuit generates waveforms 
that closely agree with the analytic solution. Sampled at 
switching times, the circuit generates a shift map consistent 
with the analytic model. Using symbols extracted from a 

measured waveform, we construct the corresponding analytic 
solution and find it closely matches the observed waveform. 
Together, these observations confirm that the exactly solvable 
analytic model provides a good representation of the 
electronic circuit. 

II. ELECTRONIC CIRCUIT 

A hybrid electronic oscillator, containing both analog and 
digital components, is shown in Fig. 1. This circuit was 
constructed using commercially available, discrete 
components on a solderless breadboard. The analog 
operational amplifiers are all type TL082, which are powered 
using ±15 V. The diodes are all type 1N4148. The digital 
integrated circuit is a dual positive-edge-triggered D flip flop 
(SN54LS74AJ), which is powered with +5 V. The digital and 
analog components share a common ground. 

On the left side of the circuit, certain analog components 
are grouped by dashed boxes. The first grouping, labeled -R, 
comprises an active circuit realizing a negative resistor. The 
second grouping, labeled L, is an impedance converter that 
provides a nearly ideal inductor. Also significant is the 
capacitor labeled C, which connects -R and L to a virtual 
ground provided by an operational amplifier. For the nominal 
circuit values shown in the figure, we have C = 1.3 µF, 
L = 2.7 H, and -R is tunable by a variable resistor. 

We recognize the left side of this circuit as a standard RLC 
harmonic oscillator, except that the resistance is negative. 
Thus, this part of the circuit is modeled by the equations 

 0
dv v

C i
dt R

    (1) 

and 

 s
di

L v v
dt

   (2) 

where v is the tank voltage, i is the current through the 
inductor, and vs is a feedback voltage applied to the inductor. 
We introduce the dimensionless time 
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and 2  . As we show below, the period T is the return 
time for the oscillator. Equations (1) and (2) are then written 
as 
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where the parameter 
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T

RC
   (6) 

is the dimensionless negative damping. For the circuit, we 
only consider 0 ln 2  . 

We now examine the function of the right side of the 
circuit, which contains the digital circuitry. In the top trace, an 
operational amplifier is configured as a comparator, which 
detects the sign of the tank voltage v. The subsequent diode 
and voltage divider convert the saturated amplifier output to 
digital logic levels. The middle trace uses a current-to-voltage 
converter to give 

 d d
dv

v R C
dt

   (7) 

where Rd is the feedback resistor. A second comparator then 
detects the sign of this voltage. The following capacitor, 
diodes, and difference amplifier generate a short trigger pulse 
for any transition in the comparator output. Thus, the middle 
trace generates a trigger pulse whenever the derivative of the 

tank voltage changes sign. This trigger signal is also scaled to 
digital logic levels. 

The digital logic signals from the top two traces control a 
single flip flop in the 54LS74 integrated circuit. The flip flop 
is configured here so that its output encodes and holds the sign 
of the tank voltage at the last transition in the capacitor 
current. This output is fed back to the oscillator via the bottom 
trace. A summing circuit with fixed gain shifts the digital 
signal to the symmetric levels ±V, and the feedback signal vs is 
applied to the tank inductor. 

Therefore, the feedback circuit is modeled by the 
switching condition 

   00 sgns
dv

v V v V
dt

     (8) 

meaning that, whenever the derivative of the tank voltage 
passes through zero, the feedback voltage vs is set to the sign 
of the tank voltage times the fixed magnitude V. Furthermore, 
the feedback voltage is held constant until the next trigger 
event when the derivative transitions. An offset voltage V0 is 
included to account for a small, yet unavoidable asymmetry in 
the electronic circuit. 

III. ANALYTIC SOLUTION 

The dynamics of the electronic circuit are modeled by the 
ordinary differential equation (5) with the switching equation 
(8). Defining the dimensionless states 

 0v V
u

V


  (9) 

and 

 0sv V
s

V


  (10) 

we obtain the dimensionless hybrid system 
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Figure 1.  Chaotic hybrid oscillator circuit. 
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    2 22 0u u u s          (11) 

and 

       0 sgnu s u      (12) 

where 2   and a dot represents a derivative with respect 
to the dimensionless time . 

 Significantly, an exact analytic solution to the hybrid 
system can be found [6].  Here we write the solution as the 
linear superposition 

    
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m
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
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


    (13) 

where the square brackets indicate the largest integer less than 
or equal to the argument, 
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 (14) 

is a basis pulse, and ms  is sequence of binary symbols, 1. 
The veracity of this solution can be confirmed by direct 
substitution. 

 We note that the solution (13) satisfies   0u n   and 

 1 2 0u n    for all integer n. We also note that 

     sgn 1 2 sgnu n u n   for all n; thus, transitions in the 

discrete state  s   due to the switching condition (12) occur 

only at integer dimensionless times. Thus, we can condense 
the binary waveform  s   to the discrete sequence of binary 

symbols,  ns s n . 

Significantly, successive returns of the solution at integer 
dimensionless times satisfy the recursion relation 

      1 1 nu n e u n e s       (15) 

which is a shift map with slope e . Since 0  , the slope of 
the return map is everywhere greater than one. The map is also 
closed on the unit interval for ln 2  , so the shift map is 
necessarily chaotic. By implication, the hybrid system 
(11)-(12) is also chaotic, and it is characterized by the positive 
Lyapunov exponent   . 

IV. MEASURED WAVEFORM DATA 

The negative resistor was adjusted to obtain chaotic 
dynamics. For R ~ 6.5 k, the circuit oscillates chaotically 
with a fundamental frequency near 84 Hz. Waveforms v, vd, 
and vs were sampled at 100 kHz using a data acquisition 
device and a PC.  To reduce sampling noise, the oversampled 
data was smoothed using a running average over a window of 
ten samples. 

Fig. 2 shows a typical measured time series for the tank 
voltage v. Also shown is the corresponding digital signal vs, 
which switches between two fixed points, ±V. After each 
switching event, the tank voltage exhibits growing oscillations 
about the fixed point. When the oscillation gets large, a 
switching event is triggered. Fig. 3 shows a phase space 
projection of v and vd for a four-second trajectory. From 
analysis of the measured signal vs, we estimate the amplitude 
scale V = 0.81 V and offset V0 = -0.02 V. 

Using the nominal circuit values and equations (4) and (6), 
we estimate T = 0.012 s and 0.7 ~ ln 2  . However, more 

precise estimates for T and  are derived from analysis of the 
measured waveform. Using transitions detected in vs, we 

determine the return times tn where   0n
dv

t
dt

  and 

  0nv t V V  . The average return time is 1n nT t t  , 

which gives T = 0.0119 s. A return map for the successive 
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Figure 2.  Typical time series measured from the circuit. The oscillating 
waveform is the tank voltage v, while the random square wave is the discrete 

switching state vs. 
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Figure 3.  Phase space projection of measured circuit waveforms. 
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returns v(tn) is shown in Fig. 4. This map is in agreement with 

the analytic solution (15), which predicts the slope 1e  . 
Using a linear least squares fit to each segment of the 

measured return map, we obtain 1.92e  , so that  = 0.65. 

We also directly confirm the agreement between the 
oscillator circuit and the analytic model. From the measured 
switching signal vs, we extract the symbol sequence sn. For the 
4-second waveform, a total of 336 symbols are obtained. 
Using these symbols and the precise estimates of T and , the 
corresponding analytic waveform is constructed using 
equations (9) and (13). We note the sum in the analytic model 
is evaluated for just the known symbols, so that the solution is 
not theoretically exact; however, the exponential nature of the 
neglected terms implies the error in the truncated solution is 
negligible. A typical portion of the measured waveform and 
analytic solution are shown in Fig. 5(a). In this plot, the two 
waveforms overlap and are indistinguishable, which indicates 
remarkable agreement. In Fig. 5(b), the difference v between 
the measured waveform and analytic solution is shown on a 
finer scale. The close agreement between the two waveforms 
confirms the reliability of the circuit model. 

V. CONCLUSIONS 

In this paper we showed a chaotic oscillator circuit that is 
accurately modeled by an exactly solvable hybrid system. 
Although the circuit oscillates at low frequencies (~84 Hz), a 
higher frequency version of this oscillator may prove useful 
for technological applications of chaos. For example, the 
circuit provides an antipodal chaotic waveform, which is 
preferable for proposed chaotic communication approaches 

based on encoding message signals in symbolic dynamics [7, 
8]. In addition, the existence of a fixed basis pulse suggests 
that a matched filter may be practically realized for detecting 
and decoding the received symbols. Along these lines, we 
have recently identified a significant relationship to the 
synthesis of reverse-time chaos with linear filters [9]. The 
development and application of a practical matched filter for 
chaotic oscillators is the subject of our current research efforts. 
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Figure 4.  Successive return map with lines fit to measured data. The 
slope of both lines are e = 1.92, so that the negative damping is  = 0.65. 
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Figure 5.  A typical time series comparison showing (a) measured 
circuit waveform and corresponding analytic solution and (b) magnified 

(20x) difference v between measured and analytic waveforms. 
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