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Abstract— This paper describes a new adaptive algorithm and
assesses its effectiveness within speech enhancement applications.
The proposed variable step size block exact APA (VSS-BEAPA)
filtering is based on the affine projection algorithm (APA) and
introduces a block processing with a variable step size that
allows to consider under-modeling scenarios. The algorithm
shows improved convergence performance and computational
efficiency and its robustness is proved in a typical context of a
hands-free teleconferencing application in a noisy environment.
The experiments show that a microphone array system joined
with VSS-BEAPA filtering is capable of both decreasing the noise
level and enhancing the speech signal quality.

I. INTRODUCTION

Most of hands-free mobile telephony and teleconferencing
systems tend to amplify all environment sounds, without trying
to detect the main speech signal. In an office environment
the background noise typically arises from computer fans,
traffic, audio equipment or other speakers present in the room
(e.g. cocktail party noise). Background noise can compromise
the intelligibility of recorded speech signals and resulting in
binaural information loss. This is one of the reasons why
speech enhancement is currently an important area of research.

Beamforming techniques intend to enhance the speech in
teleconferencing applications. A classic beamforming system
that enhances speech is the generalized sidelobe canceller
(GSC) [1] composed of a fixed delay-and-sum beamformer
(DSB) and adaptive noise cancelling path that enables the
microphone interface to adapt to varying noise conditions,
providing additional attenuation of undesired noise sources
and leading to lower noise power in the beamformed output.

Teleconferencing applications, as well as other hands-free
applications, require adaptive filters with hundreds or even
thousands of taps. Their success depends on the nature of the
acoustic impulse response. Generally the adaptation of the can-
celler uses classic least-mean-square-based algorithms, such
as least mean square (LMS) and normalized LMS (NLMS);
however, these algorithms display a very slow convergence
for long filters [2] such that adaptation becomes unpractical
in hands-free applications. The affine projection algorithm
(APA) [3] and other APA-based algorithms were used in
adaptive beamforming [4] showing better convergence rates
and manageable computational complexity.

In this paper a variable step size block exact affine projection
algorithm (VSS-BEAPA) is proposed. The VSS-BEAPA is
an exact transposition in the frequency domain of a block

APA [5] with a variable step size that allows to consider
under-modeling situations [6] that occur when the length of
the adaptive filter is shorter than the length of the impulse
response, as is the rule in hands-free applications.

A GSC with a VSS-BEAPA filtering is evaluated in terms of
speech quality measure, showing improved performance with
respect to classic configurations. Furthermore, the addition of
a post-filter is investigated.

This paper is organized as follows: in Section II a superdi-
rective beamforming system is introduced. In Section III the
VSS-BEAPA filtering is described. Section IV is devoted to
the performance analysis of the proposed system. In Section
V our conclusions are drawn.

II. SUPERDIRECTIVE BEAMFORMING TECHNIQUE

The chosen superdirective beamforming system, depicted in
Fig. 1, is derived from near-field superdirectivity (NFSD) [7]
and consists of a DSB and an adaptive sidelobe cancelling path
in typical GSC configuration. It is well known that standard
DSB is not well suited for the task of speech enhancement
because of its poor directivity index at low frequencies [7].
This shortcoming is covered by a proper microphone interface
as well as by the adaptive noise cancelling path. The main
assumption made is that the desired source is situated in
the array’s near-field while the dominating noise sources are
located in the far-field, as is generally the case in the chosen
application.

Let us consider a microphone array composed of M sensors.
The signal um [n] acquired by the m-th microphone, with m =
1, . . . ,M , contains a delayed replica of the target signal s [n]
with the addition of background noise vm [n]:

um [n] = s [n] + vm [n] (1)

As shown in Fig. 1, the DSB spatially aligns the microphone
signals with reference to the speech source direction and gen-
erates the speech reference d [n]. The adaptive path receives
the input signals and generates the noise references xi [n], with
i = 1, . . . ,M − 1, by means of the blocking matrix (BM).
These signals are then filtered by the adaptive noise canceller
(ANC) which removes the correlation of the residual noise
component in the speech reference and the noise references,
generating the beamformer output e [n]. This structure exploits
the microphone array configuration further maximizing the
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Fig. 1. Speech enhancement system.

directivity index in the desired source direction and reducing
interfering signals derived from diffuse noise field.

In order to improve the performance of the system, a
Zelinski post-filter [8] is added to the beamformer. The whole
system benefits from some important properties of the post-
filter. Firstly, a full cancellation of incoherent components of
the signal is obtained, so that a high reverb reduction can
be expected. Moreover, the time-varying nature of the post-
filter allows to consider non-stationary acoustic environments.
Zelinski post-filter estimation is based on the the cross- and
auto-spectral densities of the microphone signals.

III. VARIABLE STEP SIZE BLOCK EXACT APA

The adaptive filtering occuring in the ANC block plays a
fundamental role in the superdirective beamforming process.
The ANC can be seen as a MISO (multiple-input single-
output) system composed of a bank of adaptive filters, each
relative to a microphone signal. The cancellation of each filter
output from the speech reference d [n] yields the estimate of
the background noise y [n] and the beamformer output e [n].

In speech enhancement applications, the adaptive filter
order can be large thus requiring a large computational cost.
Computational complexity is proportional to the number of
coefficients; therefore, adaptation can become prohibitively
expensive, compromising real-time implementation. For this
reason advanced adaptive algorithms with high complexity,
such as the recursive least squares (RLS) algorithm [2], are
not taken into consideration. On the other hand, cheaper
algorithms, such as least mean squares (LMS) and normalized
LMS (NLMS) [2] converge slowly, especially with speech
signals.

The proposed VSS-BEAPA is derived from a frequency-
domain implementation of the block APA [5] with a time-
varying step size [6]. Each iteration provides a block of P
samples of the beamformer output e [n]. Let us denote with
b = 1, . . . , B the block index, where B is the number of
blocks. The beamformer output relative to the block b is a
P × 1 vector defined as:

e[b]
n = d[b]

n − y[b]
n (2)

where d[b]
n is a selection of the L × 1 DBS output vector

dn = [d [n] , d [n− 1] , . . . , d [n− L + 1]]T . Similarly, y[b]
n is

an ANC output block, achieved by:

y[b]
n =

1
M − 1

M−1∑
i=1

Xi
T
nwn (3)

In equation (3), M is the number of microphones and Xin is
the L × P reference noise matrix, created using a projection
order P for each reference noise signal, and defined as:

Xin =


xin

xin−1

· · ·
xin−P+1


T

(4)

=


xi [n] xi [n− 1] · · · xi [n− P + 1]

xi [n− 1] xi [n− 2] · · · xi [n− P ]
...

...
. . .

...
xi [n− L + 1] xi [n− L] · · · xi [n− P − L + 2]


In (3), the L × 1 vector wn contains the coefficients of
the adaptive filter. For each microphone, the resulting update
equation of the VSS-BEAPA algorithm is:

wn = wn−1 + µ [n]XinR−1
n e[b]

n (5)

where Rn = Xi
T
nXin + δI is the P × P input covariance

matrix, δ is a regularization parameter and µ [n] is the time-
varying step size. In equations (3) and (5) the matrix-vector
products are computed using the fast Fourier transform (FFT),
as done in [5]. Due to block processing, the inversion of Rn

can be simplified in the following way [2]. Denoting with
ΓUn = Xi

dPe
n

T
Xi

dPe
n and ΓDn = Xi

bPc
n

T
Xi

bPc
n the first

and the last P ×P sub-matrices of Xi
T
nXin, respectively, we

can write Rn in a recursive way:

Rn = Rn−1 + ΓUn − ΓDn−1 (6)

Instead of compute the (P × L) × (L× P ) product of
Xi

T
nXin, equation (6) computes Rn by means of the only

updating matrices ΓUn and ΓDn−1. It should be noted that
the matrix ΓDn−1 was already computed at time n− 1, thus
the computation of Rn requires only one (P × P )× (P × P )
product per iteration. The initialization of Rn is R0 = δI,
where I is the P × P identity matrix.
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According to [6], we choose a variable step size parameter
µ [n] that allows to take into account an under-modeling
scenario that occurs when the length of the filter LF is shorter
than the length L of the acoustic impulse response (AIR).
Therefore the chosen variable step size is:

µ [n] =


µf , n ≤ LF∣∣∣∣∣1−

q
|bσ2

s [n]−bσ2
y[n]|

bσe[n]+ξ

∣∣∣∣∣ , n > LF

(7)

where ξ is a small positive number that avoids division by
zero. The general parameter σ̂2

α [n], where α = {s, y, e},
represents the power estimate of the sequence α [n]. This can
be computed as:

σ̂2
α [n] = λσ̂2

α [n− 1] + (1− λ) α2 [n] (8)

where λ is a weighting factor chosen as λ = 1− 1/ (KNF ),
with K > 1. The initial value is σ̂2

α [0] = 0. Due to the
fact that for the first LF iterations the filter is not under-
modeled, we start the process using the original fixed step
size µf for n ≤ LF , when the estimate of the coefficients is
influenced only by the system noise v [n]. The computation of
the power estimates in (7) could lead to minor deviations from
the previous theoretical conditions, so that we can consider the
absolute value of the step size parameter.

As it is evident from (5) and (7), the VSS-BEAPA algorithm
uses parameters available exclusively from the adaptive filter,
i.e. s [n], y [n], and e [n]. All the information concerning the
acoustic nonstationarity is contained in the relation (7). This
feature gives robustness to the VSS-BEAPA algorithm in very
noisy environments.

In comparison with the NLMS or time-domain block APA,
the VSS-BEAPA displays an improved convergence perfor-
mance. It achieves a considerable cost reduction and reduced
latency due to block processing in the frequency domain and
to the possible choice of under-modeled filters.

IV. SIMULATION RESULTS

A. Evaluation of the VSS-BEAPA filtering

In the following set of experiments we prove the effec-
tiveness of the proposed algorithm in adverse environment
conditions. In particular, we analyze a common scenario in
teleconferencing applications, in which the acoustic environ-
ment changes due to a nonstationary source or to an alteration
in the environmental conditions. The experiments take place
in a 10 × 6, 6 × 3 m room with a reverberation time of
T60 = 300 ms. The AIR is simulated by means of a Matlab
tool (Roomsim1) and is measured by using an 8 kHz sampling
rate with L = 2048 coefficients. The target signal is a white
Gaussian noise. A further independent white Gaussian noise
with zero mean and unit variance is added as background noise

1Roomsim is a MATLAB simulation of shoebox room acous-
tics for use in teaching and research. Roomsim is available from
http://www.mathworks.com/ matlabcentral/fileexchange/authors/14085.

Fig. 2. Misalignment comparison. The impulse response changes after 5
seconds. VSS-BEAPA uses a filter length of LF = 1024 samples.

with a signal to noise ratio (SNR) of 20 dB. Both signals have
a length of 10 seconds. In the parameter settings, we choose
the following values: K = 2, ξ = 0.0001, δ = 30σ2

x, where σ2
x

is the power of the filter input signal, and µ = µf = 0.2. For
APA algorithms we choose a projection order of P = 2, and
in VSS-BEAPA we set the length of the filter to LF = 1024
samples. In order to measure the algorithms performance we
use the normalized misalignment Mum, expressed in dB, for
under-modeling scenarios, defined as:

Mum = 20 log10

(
‖wIn −wFn‖2

‖wIn‖2

)
(9)

where wIn
is the AIR column vector, and wFn

=
[w0 [n] , w1 [n] , . . . , wLF

[n] , 0LF +1 [n] , . . . , 0L [n]]T is the
estimated filter in the under-modeling case.

In order to introduce an abrupt change in the acoustic
environment we shift the acoustic impulse response circularly
to the right by 20 samples, 5 seconds after the start of the
adaptive process. Figure 2 shows that while NLMS and time-
domain block APA display roughly the same convergence rate,
the VSS-BEAPA has a lower misalignment; however, VSS-
BEAPA reacts faster than other algorithms when the impulse
response changes.

B. Evaluation of the Superdirective Beamformer with the VSS-
BEAPA filtering

In order to evaluate the beamforming system described
above, we consider the same configuration of the previous
simulations, but in this case the source of interest is a male
speaker located 70 cm from a microphone array.

The choice of the microphone array geometry plays an im-
portant role in recovering the binaural perception. An optimal
array for speech enhancement applications should possess a
large aperture in order to achieve a good spatial resolution and
at the same time it should avoid spatial aliasing. The chosen
microphone interface derives from [7] and is composed of 11
elements, consisting of 9 microphones looking at the source of
interest, with 2 further endside microphones behind the two
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Fig. 3. Microphone interface geometry.

end microphones, as shown in Fig. 3. The two endside mi-
crophones are used in order to achieve a larger information at
low frequencies. All the 11 microphones are cardioid elements.
The choice of adopting cardioid microphones derives from the
need to minimize undesired signals coming from side and back
of the array.

The enhancement of speech and noise reduction is usually
associated with a SNR improvement, defined as:

SNR = 10 log

 E
{

rin [n]2
}

E
{

rin [n]2
}
− E

{
rout [n]2

}
 (10)

where rin [n] is the generic input clean signal and rout [n] is
the processed signal. The operator E {·} is the mathematical
expectation.

The speech spectral content is time-varying; this is the rea-
son why the background noise affects the desired speech signal
in different ways according to the variant nature of speech
phonemes. In order to get a better evaluation of the achieved
enhancement, we join the SNR measure with the log area
ratio (LAR) measure [9]. The LAR is an objective measure
of the dissimilarity between the original and processed speech
signals; it derives from the linear prediction coefficients (LPC),
a highly effective representation of the speech signal. In LAR
analysis, the vocal tract of a person is modelled as a non-
uniform acoustic tube formed by cascading a number of q
cylindrical tubes of uniform equal length with different cross-
section areas. The LAR coefficients are formed by the ratio
between the cross-section areas of every two connected tubes.
Hence, the LAR measure is defined as [9]:

LAR =

[
1
q

q∑
k=1

(
log

1 + rin [k]
1− rin [k]

− log
1 + rout [k]
1− rout [k]

)2
] 1

2

(11)
The shorter this value is, the better the speech quality of the
enhancement.

In our experiments, we measure a 5 dB SNR input level.
We calculate SNR and LAR distances considering the fol-
lowing four structures: the first is the only delay-and-sum
beamformer (DSB); the second is a GSC with the DSB and
an adaptive noise canceller path whose adaptive filter is the
NLMS algorithm (GSC NLMS). The third is the GSC with the
proposed VSS-BEAPA filtering algorithm (GSC VSS-BEAPA)

TABLE I
SPEECH QUALITY COMPARISON.

SNR (dB) LAR
DSB 9.3 5.6

GSC NLMS 17.4 4.1
GSC VSS-BEAPA 24.6 3.5

GSC VSS-BEAPA + Post-Filter 27.1 3.1

and the last is the GSC VSS-BEAPA with the addition of
a Zelinski post-filter [8] (GSC VSS-BEAPA + Post-Filter).
Speech analysis has been carried out on 20 ms speech frames
with a 5 ms overlap. The results are collected in Table I
where it is evident that the proposed system with the post-
filter is consistently superior to standard configurations, such
as the DSB and classic GSC beamformers, in terms of noise
reduction as well as perceptual distortion.

V. CONCLUSION

This paper introduced a novel adaptive algorithm, VSS-
BEAPA, that shows improved convergence performance and
computational efficiency with respect to existing techniques.
Its effectiveness is assessed in a speech enhancement system
that combines a delay-and-sum beamformer with an adaptive
noise canceller and a post-filter. The VSS-BEAPA exploits
the noise reference signals derived from the blocking matrix
and subtracts them from the output of the fixed path of the
beamformer, bringing about a strong reduction of background
noise. This system also determines an improvement of speech
enhancement in terms of SNR and LAR measures. Perfor-
mance advantages stand out especially in the case of high level
of background noise, which is typical in such applications.
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