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Abstract— A novel approach to beamforming using a new class
of sensor arrays is proposed, which can increase the achievable
degrees of freedom significantly beyond the conventional limits
obtained from uniform linear arrays (ULA). This class of arrays
is named as “nested arrays” since they are obtained by nesting
two or more ULAs with increasing inter-sensor spacing. Using
the second order statistics of the signal received by such an
array in a novel way, it is possible to perform beamforming with
O(N2) degrees of freedom using only O(N) physical elements.
This kind of beamforming will be shown to be essentially non
linear in nature and theoretically, it is capable of nulling the
effect of noise provided enough snapshots are available. 1

Index Terms — Beamforming, Co-array, Degrees of Freedom,
Jammer, Non Uniform Arrays.

I. INTRODUCTION

Beamforming using antenna arrays is the spatial analogue
of temporal filtering which forms the core of all signal
processing applications [9], [4]. It is widely used to improve
detection and estimation performance by enhancing the signal
to interference and noise ratio (SINR) in diverse applications
like radar, sonar, acoustics, smart antennas for communication
etc. Traditionally, beamforming is performed using an array
of uniformly spaced antennas because such an array performs
uniform sampling of the space, making it easier to directly
apply the various filtering techniques of traditional digital
signal processing. This kind of beamforming is linear with
respect to the amplitude of the impinging signals. However
the degrees of freedom obtainable from a ULA of N sensors,
is N .

In this paper, we propose a novel “non linear” approach
to beamforming which is capable of increasing the degrees
of freedom much beyond the conventional limit of N . This
approach is based on two main concepts: (1) Use of a novel
“nested array” structure (instead of a ULA), and (2) Perform-
ing spatial filtering with respect to the signal powers instead of
the amplitudes. With this nested array, it is possible to realize
a longer “virtual array” which is identical to the difference
co-array [10] of the original array, by using the second order
statistics of the received signals. The co-array of the nested
array structure, as we shall demonstrate, has O(N2) degrees
of freedom though the original array has only O(N) sensors
and hence we can effectively perform beamforming with a
considerable increase in degrees of freedom. This increase
in degrees of freedom can be used to obtain better spatial
resolution, suppression of more jammers and so forth.

A somewhat similar approach to beamforming was explored
in [2] where specific examples of some special arrays were
considered instead of suggesting a general class to systemat-
ically increase the degrees of freedom. Our proposed nested
array, however, constitutes a broader and more general class
of arrays which can be constructed in an easy and systematic
fashion. We shall also provide the exact degrees of freedom
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associated with each nesting strategy and optimize across all
possible strategies to maximize the degrees of freedom [7].
In [1], a longer “virtual array” was realized through active
sensing with a MIMO radar but in our case, the increase in
degrees of freedom will be obtained in a passive setting. As
we shall show, this beamforming spatially filters the powers
of the sources (instead of their amplitude) and hence it is
inherently non-linear in nature. Another major advantage of
the proposed approach to beamforming is that, assuming
perfect estimation of the signal covariance matrix, it can
eliminate noise, which is never possible using conventional
linear approach to beamforming. An application of this nested
array in passive DOA estimation with increased degrees of
freedom is discussed in another submission [6].

The rest of the paper is organized as follows. In Section
II, we deduce the non-linear signal model and define the
new non linear approach to beamforming. In Section III we
propose a new class of nested arrays and demonstrate how
they are capable of providing significant increase in degrees
of freedom. In Section IV, we develop the new beamforming
technique for realizing both deterministic beampatterns and
nulling of jammers and noise. The performance of the pro-
posed beamformer is validated through numerical examples
in Section V.

II. A NEW APPROACH TO BEAMFORMING

Consider a N element (possibly non uniform) antenna array.
Let a(θ) be the N × 1 steering vector corresponding to the
direction θ. Let us assume D narrowband sources impinging
on this array from directions {θd, d = 1, 2, · · · , D}, with
powers {σ2

d, d = 1, 2, · · · , D} respectively. The received
signal can be written as

x[k] = As[k] + n[k] (1)

where A = [a(θ1) a(θ2) · · ·a(θD)] denotes the array man-
ifold matrix and s[k] = [s1[k] s2[k] · · · sD[k]]T denotes the
source signal vector. The noise n[k] is assumed to be tempo-
rally and spatially white, and uncorrelated from the sources.
We also assume the sources to be temporally uncorrelated so
that the source autocorrelation matrix of s[k] is diagonal. The
autocorrelation matrix of x[k] can be written as:

Rxx = E[xxH ]
= ARSSAH + σ2

nI

= A

⎛
⎜⎜⎝

σ2
1

σ2
2

. . .
σ2

D

⎞
⎟⎟⎠AH + σ2

nI (2)

Now, following [5], we vectorize Rxx to get the following
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vector

z = vec(Rxx)

= vec
[ D∑

i=1

σ2
i (a(θi)aH(θi))

]
+ σ2

n1̃n

= (A∗ � A)p + σ2
n1̃n (3)

where p = [σ2
1 σ2

2 · · ·σ2
D]T and 1̃n = [e1

T e2
T · · ·eN

T ]T
with ei being a vector of all zeros except a 1 at the ith position.
Comparing it with (1), we can say that z in (3) behaves like
the received signal at an array whose manifold is given by
A∗�A. The equivalent source signal vector is represented by
p and the noise becomes a deterministic vector given by σ2

n1̃n.
The distinct rows of A∗ � A behave like the manifold of a
(longer) array whose sensor locations are given by the distinct
values in the set { �xi − �xj , 1 ≤ i, j ≤ N} where �xi denotes
the position vector of the ith sensor of the original array. This
array is precisely the difference co-array of the original array
[10], [3]. So we can regard (3) as the new signal model and
perform beamforming with respect to the signal powers instead
of the signal amplitudes and this enables us to exploit fully
the degrees of freedom of the difference co-array. To see this,
consider taking the inner product of the vector z in (3) with
a weight vector w to get

y = wHz

=
D∑

i=1

wH
(
a∗(θi) ⊗ a(θi)

)
σ2

i + σ2
nwH 1̃n (4)

Defining the new beampattern as

Bpower(θ) = wH
(
a∗(θ) ⊗ a(θ)

)
, (5)

we can write (4) as

y =
D∑

i=1

Bpower(θi)σ2
i + σ2

nwH 1̃n (6)

Hence the power of the ith source from direction θi gets
spatially filtered by the amount Bpower(θi) and thereby spatial
filtering (or beamforming) is performed with respect to the
power of the signal. Note that though the beampattern spatially
filters the power of the signal, the value of Bpower(θ) can be,
in general, complex. However, for detection purpose, we shall
compare the value of |y| with some appropriate threshold after
constraining Bpower(θ0) to be 1 and making the contribution
of terms due to the jammers and noise arbitrarily small.
Therefore, the complex value of Bpower(θ) will not affect the
detection. As is evident, this kind of beamforming is based on
a non linear preprocessing (taking the autocorrelation of the
received signal vector) and hence it is essentially a non linear
beamformer. It also requires uncorrelated sources and enough
snapshots to realize the autocorrelation matrix.

In [7], we discuss the co-array perspective in greater detail
and point out that the maximum degrees of freedom obtainable
from the co-array of an N element array possessing any
geometry, is

DOFmax = N(N − 1) + 1. (7)

However, in general, construction of arrays whose difference
co-array can provide dramatic increase in degrees of freedom,
is difficult and they are mostly found through computer search
[11], [9]. To address this problem, we propose a novel class

of arrays called the “nested arrays”, which, as we shall
demonstrate, can provide O(N2) degrees of freedom using
only O(N) physical sensors. The “two level” nested array
as we shall define below, coincides with the array structure
originally proposed by Bracewell (see [8]). However, we shall
generalize the structure to beyond 2 levels to systematically
increase the degrees of freedom.

III. NESTED ARRAYS

A. 2 levels of nesting

A two-level nested array is a concatenation of two ULAs:
inner and outer where the inner ULA has N1 elements with
spacing d1 and the outer ULA has N2 elements with spacing
d2 such that d2 = (N1 + 1)d1. Fig. 1(a) shows an example.
The following Lemma points out an important fact about its
difference co-array.

Lemma 1: Let us consider a 2 level nested array with N1
and N2 elements in the two levels respectively. Then,

• Its difference co-array is a filled ULA.
• The difference co-array has 2N2(N1 + 1)− 1 degrees of

freedom with co-array elements located at

{nd1, n = −M, · · · , 0, · · · , M}
where M = N2(N1 + 1) − 1.

Fig.1(b) demonstrates the difference co-array of the two level
nested array. We can further optimize the distribution of

d 2d 3d 4d 8d 12dd 2d 3d 4d 8d 12d

Level 1 Level 2

Fig. 1. A 2 level nested array with 3 sensors per level, and its difference
co-array.

sensors in the two levels by finding N1, N2 that maximize
the total degrees of freedom, 2N2(N1 + 1) − 1, under the
constraint of fixed total number of sensors, i.e., N1+N2 = N .
The solution (using AM-GM inequalities) can be verified as:

N optimal N1, N2 DOF
even N1 = N2 = 1

2N N2−2
2 + N

odd N1 = N−1
2 , N2 = N+1

2
N2−1

2 + N

Hence, using 2 level of nesting, we can obtain approximately
N2/2 degrees of freedom from N elements. However this is
approximately half of the maximum limit in (7). So now we
examine how far we can increase the degrees of freedom of
the co-array by extending the nesting strategy to more than
two levels.
B. K levels of Nesting

A ‘K-level’ nested linear array, with Ni sensors in the ith
level of nesting, is defined as one where the sensor positions

2841



are given by the set S(K-level) =
⋃K

i=1 Si where

Si = {nd

i−1∏
j=1

(Nj + 1), n = 1, 2, · · · , Ni}, i = 2, · · · , K

S1 = {nd, n = 1, · · · , N1}
The following theorem which is proved in [7], gives the
structure of the optimally nested array (i.e., the K-level nested
array with maximum degrees of freedom) and its degrees of
freedom:

Theorem 1: Given a number N of sensors, the optimal
number of nesting levels K and the number of sensors per
nesting level are given by

K = N − 2

and
Ni =

{ 1, i = 1, 2, 3, · · · , K − 1
2, i = K

The corresponding difference array is a non uniform linear
array with degrees of freedom given by DOFopt = N(N −
1) + 1 which is same as the upper bound in (7).
The nested arrays therefore provide an easy way to construct
arrays whose difference co-arrays provide dramatic increase in
degrees of freedom (close to the upper limit for large N ). The
sensor positions and expressions for degrees of freedom are
exactly computable as a function of N which is not possible
for the existing classes of Minimum Redundancy arrays [9],
[11].

We now exhibit some examples of different approaches to
beamforming that can be performed with this array. Since
the two-level nested array has a uniform difference co-array,
we would concentrate on beamforming with 2 level nesting
since all the conventional beamforming approaches are based
on ULAs. However, the beamforming techniques might be
extended to the optimally nested array as well.

IV. BEAMFORMING WITH NESTED ARRAYS

A. Deterministic Beamforming

Let us consider a 2 level nested array with N/2 sensors
in each level. The difference co-array is an ULA with (N2 −
2)/2+N elements. Let b(θ) denote the ((N2−2)/2+N)×1
steering vector of the ULA corresponding to the co-array. Say
we want to realize a beam Bdes(θ) with this ULA and let
wdes denote the deterministic weights such that

wH
desb(θ) = Bdes(θ). (8)

Now to realize this beampattern with the two level nested
array, let w denote the weight vector we would like to apply
to the vector z in (3). Using (8), this means

wH
(
a∗(θ) ⊗ a(θ)

)
= wH

desb(θ), ∀θ.

From the discussion of the co-array of the 2 level nested array
in Section III, it can be easily seen that the N2 × 1 vector
a∗(θ) ⊗ a(θ) consists of the same rows as b(θ), except the
fact that some of them occur more than once. Let ni denote
the number of times the ith row of b(θ) occurs in a∗(θ)⊗a(θ)
and let i1, i2, · · · , ini denote the row numbers where it occurs
in a∗(θ) ⊗ a(θ). Then the weight vector w is given by

[w]ij =
1
ni

[wdes]i, j = 1, 2, · · ·ni

i = 1, 2, · · · , (N2 − 2)/2 + N (9)

B. Nulling of Jammers and Noise
Consider J jammers incident on the 2 level nested array

from directions {θi, i = 1, 2, · · · , J} respectively. Also as-
sume that we are interested in looking into the direction θ0.
Using the proposed beamformer in (8), this means we wish
to determine the weight w to spatially null the jammers and
maintain unity response in the look direction. This means

B(θ0) = 1, B(θi) = 0, i = 1, 2, · · · , J.

However, it can be noticed from (6) that the random noise
now assumes the form of a deterministic vector 1̃n, which
can also be nulled by the weight w. Hence, using this
beamforming, we can effectively null the noise term as well.
This is something which really cannot be achieved by the
conventional beamforming. Thus to null both jammers and
noise, w should be selected as the solution to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
a∗(θ0) ⊗ a(θ0)

)H

(
a∗(θ1) ⊗ a(θ1)

)H

(
a∗(θ2) ⊗ a(θ2)

)H

...(
a∗(θJ ) ⊗ a(θJ )

)H

(
1̃n

)T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

w =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...
0
0

⎞
⎟⎟⎟⎟⎟⎠

(10)

With this beamforming , we can null noise, and upto (N2 −
2)/2+ N − 1 jammers, since we have in all (N2 − 2)/2 + N
degrees of freedom in the co-array of the 2-level nested array.
This technique for nulling jammers can also be extended to the
case of the optimally nested array by simply replacing a(θ)
of the 2 level nested array with that of the optimally nested
one in (10).

It is to be noted that in practice, since the signal covariance
matrix is estimated from a finite number of snapshots, the
kronecker product in (10) is only an approximation and hence
(10) is satisfied only approximately. However, as we shall
show in the numerical examples, the performance is quite
satisfactory for moderate number of snapshots.

V. NUMERICAL EXAMPLES

In this section we demonstrate the capability to perform
beamforming with increased degrees of freedom offered by the
2 level nested array. We can envision two plots representing the
beampattern. One way is to plot the pattern B(θ) as defined
in (5) directly after computing the necessary weights. This
however is not practical because the kronecker product in (5)
is realized only approximately due to finite snapshots. Hence,
for practical reason, to plot a more realistic beampattern, we
consider a single source at angle θ and plot the amplitude
response of our non linear beamformer to it by varying θ
for finite number of snapshots. This automatically takes into
consideration the finite sample effect. We call the former beam
as ideal beampattern and the latter as practical beampattern.

A. Realizing a Given Beampattern

Let us consider a simple sinc beampattern obtained by
applying uniform weighting to a 23 element uniform linear
array.

Since a 6 element array (N = 6) with 2 level of nesting
gives (N2 − 2)/2+ N = 23 degrees of freedom, we consider
a 6 element array and plot both the ideal and practical beam-
patterns in Fig 2. The practical beampattern is generated using
T = 100 snapshots and it approximates the ideal beampattern
quite closely.
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Fig. 2. Practical deterministic sinc beampattern obtained by non linear
beamforming from the 2 level nested array, Number of sensors N = 6,
T = 100.

B. Beampattern for given jammer directions
Consider a 4 element array with 2 levels of nesting. The

look direction is 0◦ and we consider 6 jammers from di-
rections {−60◦,−45◦,−30◦, 15◦, 30◦, 45◦} with jammer to
signal power ratio 20 dB and signal to noise ratio 0 dB.
The ideal and practical beampatterns are generated using the
weight computed from (10) and plotted in Fig 3. Note the
introduction of nulls along the jammer positions. Also, the
sidelobes are seen to be high which could pose problems
for noise in the conventional beamforming. However, unlike
conventional beamforming, in our case the noise has been
reduced to a deterministic vector which can also be efficiently
nulled. So the presence of noise at all spatial angles (which is
assumed in conventional beamforming) can be ruled out and
hence the high sidelobes do not pose a serious threat as far
as noise is concerned. Also, we see that though this jammer
and noise nulling theoretically requires perfect knowledge of
signal covariance matrix, the practical beampattern shows that
the approximation is reasonably well at moderate number of
snapshots (T = 100).
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Fig. 3. Practical Beampattern obtained from the 2 level nested array after
nulling 6 jammers and noise, Number of sensors N = 4, T = 100.

VI. CONCLUSION

In this paper, we proposed a new approach to beamforming
by suggesting a new nested array structure which provides

an enormous increase in degrees of freedom. Instead of the
signal amplitude, this beamforming spatially filters the powers
of the impinging signals and hence it is essentially non linear
in nature. It also has the capability of eliminating the noise
provided enough snapshots are available. The performance of
this beamformer is completely dependent on the model of
the covariance matrix of the received signal and hence, in
practical scenarios, the beamformer performance will keep im-
proving with increasing number of snapshots. One immediate
extension of this idea could be to demonstrate fully adaptive
beamforming where the covariance matrix is updated with
each incoming snapshot.
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