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Abstract— Spike-based learning circuits have been typically
used in conjunction with linear integrate-and-fire neurons. As
a new class of current-mode conductance-based silicon neurons
has been recently developed, it is important to evaluate how
the spike-based learning circuits perform, when interfaced to
these new types of neuron circuits. Here, we describe a VLSI
implementation of a current-mode conductance-based neuron,
connected to synaptic circuits with spike-based learning ca-
pabilities. The conductance-based silicon neuron has built-in
spike-frequency adaptation, refractory period mechanisms, and
plasticity eligibility control circuits. The synaptic circuits exhibits
realistic dynamics in the post-synaptic currents and comprise
local spike-based learning circuits, controlled by the global post-
synaptic eligibility circuits.We present experimental results which
characterize the conductance-based neuron circuit properties and
the spike-based learning circuits connected to it.

1. INTRODUCTION

In 1952 Hodgkin and Huxley developed an extremely
accurate and elegant model of biological neurons, based on
data from the squid giant axon [1]. It consists of a set of
nonlinear ordinary differential equations describing the elec-
trical properties of neurons, where voltage gated ion channels
are represented by nonlinear conductances, which change as
functions of membrane voltage and time. The H-H model is the
most successful and widely-used conductance-based model of
neurons.

Several VLSI implementations of this and analogous
conductance-based models of neurons have been proposed
in the past [2]-[5]. However, given their complexity, they
require significant silicon real-estate and a large number of
bias voltages or currents to configure the circuit properties.

Simplified Integrate-and-Fire (I&F) models would require
far less transistors and parameters, but they do not produce
a rich enough repertoire of behaviors useful for investigating
the computational properties of large neural networks [6], [7].

This problem has been recently overcome with the proposal
of conductance-based or generalized I&F models [6]—[8], that
capture many of the properties of biological neurons, but
require less and simpler differential equations compared to
the H-H model. These types of models have been shown
to be efficient both in software simulations and hardware
VLSI implementations [6], [9]-[11]. We recently proposed a
conductance-based silicon neuron circuit [11] which imple-
ments an adaptive exponential I&F model [7]. The circuit is
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compact, low-power, has biologically realistic time constants,
and implements refractory period and spike-frequency adapta-
tion mechanisms which can be used to implement resonances
and oscillatory behaviors often emphasized in more complex
models [6], [8]. In addition, this circuit is compatible with
fast asynchronous Address-Event Representation (AER) logic.
This allows us to integrate the neuron circuit in event-based
VLSI architectures, and use it to construct large distributed
reconfigurable neural networks.

Here we present experimental results from a chip compris-
ing an array of generalized I&F neurons, connected to silicon
synapses that exhibit biologically plausible temporal dynamics
and spike-driven plasticity [12], [13]. We derive analytically
and demonstrate experimentally the silicon neuron’s adaptive
exponential I&F properties, show how it’s adaptation mecha-
nism can be used to implement different spiking behaviors
and neural models, and demonstrate how it is compatible
with spike-based learning circuits, which have been typically
used in conjunction with constant linear I&F circuits in the
past [12].

II. THE VLSI IMPLEMENTATION

The data presented in this paper were measured from a VLSI
chip fabricated in a standard 0.35um, n-well, four metals,
double poly, CMOS process. The chip occupies an area of
8.6 mm? and comprises a 2.3 mm? matrix structure with 32
rows of silicon neurons, each containing 64 synapses.

A. The conductance-based silicon neuron

This circuit, shown in Fig. 1, comprises an input diff-pair
integrator (DPI) [14] (M1-M4), which models the neuron’s
leak conductance and can produce exponential subthreshold
dynamics in response to constant input currents. The integrat-
ing capacitor C,,,¢,, represents the neuron’s membrane capac-
itance, while an inverting amplifier (M15-M17) with positive
feedback (M11-M14) implements the spike-generation mecha-
nism, modeling Sodium activation and inactivation dynamics.
The reset transistor M13 models the Potassium conductance
functionality and, together with the constant subthreshold leak
transistor M21, implements the refractory-period behavior. A
second instance of a DPI (M5-M10), models the neuron’s
Calcium conductance, and produces an after-hyperpolarizing
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Fig. 1.

Schematic diagram of the conductance-based neuron circuit.

current (I,p,) proportional to the neuron’s mean firing rate,
and responsible for the spike frequency adaptation mechanism.

The equations governing the circuit’s subthreshold behavior
can be easily obtained by applying Kirchhoff’s law on the
membrane potential node Ve, :
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The « and Iy, parameters in eq. (2) are related to the inverter’s
gain and switching point, and depend on layout and process
parameters.

By applying a current-mode analysis for both the input and
spike-frequency adaptation DPI circuits [11], [14] to eq. (1)
we obtain:
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where [, cn, is the subthreshold current flowing through the
output n-FET M22, the current I, is equivalent to the current
flowing through M6 I,s¢ during a spike, I;4,,, = Ipr10. and
the terms 7, Iy, 74, and I, are defined as:
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If we set the two threshold voltages to zero, and assume
that I, < Iyem, and Iy, < Igpp, the coupled non-linear
differential equations in eq. (3) simplify to:

d ~ IqLi LImemIan
TﬁImem + Imem ~ !I_rm - ]_r( = + f(Imem) (4)
Iy, 1s
T%Iahp'i_lahp Ay etk

Ta

AER input —

Diff-pair
spike Vo

Intergator

\Isw

Vimem

Diff-pair
Integrator

¥
IComparator’

(®)

oV

I1&F Circuit |y,

spk

Current
Comparator

—oVon

Fig. 2. Spike based learning circuit diagrams. (a) Presynaptic weight update
module (one per plastic synapse). Upon the arrival of a pre-synaptic input
spike, the circuit in (a) updates the synaptic weight V%, according the V7 p
and Vpp eligibility traces produced by the circuits in (b). The positive-
feedback amplifier has a very long slew-rate, and slowly drives the weight V2,
to one of two stable states (V,x; and V,,;0.,) depending if the updates pushed
Vi above or below the threshold V¢ (bistability circuit). The DPI circuit
in (a) produces post-synaptic currents that are summed at the soma’s Vimem
node.(b) Post-synaptic eligibility circuits (one per neuron). The post-synaptic
spikes are integrated by a DPI and produce a current /¢, proportional to its
mean firing rate. A voltage comparator compares the post-synaptic neuron’s
membrane potential Vinem to a Vy,p threshold. If Vipem > Vipp this block
selects weight increases (via Vi p), otherwise it switches to weight decreases
(via Vpp). The current comparator compares the /¢, current to constant
threshold biases, and determines weather to allow the up/down jumps or to
disable the weight updates (i.e. stop-learning). If Ic, is in an intermediate
range between these thresholds, one of the two eligibility traces Vi;p or Vpn
is activated. Otherwise, they are both set to the respective supply rails (see
[13] for a detailed description).

where the f(Ipmem) = ImemIsb/Ir tepresents the positive-
feedback contribution and exhibits, to first order approxima-
tion, an exponential dependence with I,,,e,.

Therefore the circuit of Fig. 1, described by eq. (4) repre-
sents a generalized I&F conductance-based model, which has
the specific form of an adaptive exponential 1&F model [7].
The spike-triggered adaptation current I, has the same effect
as described in the Izhikevich and analogous models [6], [7].
So depending on the values of the parameters chosen, the neu-
ron circuit presented can be tuned to reproduce qualitatively
a large variety of classes of neurons.

In Section III-A we will present data measured from the
neuron circuit which demonstrates the circuit’s conductance-
based and positive feedback properties, and show an example
in which the adaptation current has been tuned to produce
bursting.

B. The spike-based learning synapse

Plasticity mechanisms based on the timing of the spikes
can be mapped very effectively onto silicon neuromorphic
devices [15]-[17]. We recently implemented a spike-driven
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Fig. 3. Silicon neuron response to a constant input current. (a) Range of
different model behaviors as a function of the Vjy,. parameter (going from
conductance-based to constant linear I&F). In order to plot all measurements
on the same scale, the input currents were adjusted to compensate for the
changes in gain induced by the Vi, variations. (b) Fit of circuit response
with eq. (5).

learning rule, originally proposed in [18], and demonstrated
how it is extremely robust and powerful for classifying patterns
of mean firing rates [13]. The learning circuits were interfaced
however to the linear I&F circuits used in the past. We used
the same model to implement plastic excitatory synapses of the
chip presented in this paper. Figure 2 describes these circuits
and their operating principles.

In the Section III-B we demonstrate how the new neuron
circuit is compatible with these learning circuits, and present
an example of Long-Term-Depression (LTD), in which the
synapse is trained to reduce its weight.

III. EXPERIMENTAL RESULTS
A. Silicon neuron measurements

As explained in Section II-A, the non-linear differential
equations in eq. (3) can be reduced to first-order linear differ-
ential equations, depending on the value of Vi, (see Fig. 1).
We injected constant current in the neuron and recorded the
membrane potential, for 4 different values of V};,,.. Figure 3(a)
shows the effect of the V}j, changes, demonstrating how it is
possible to smoothly go from a constant linear I&F behavior
(Vine = 0.9V) to a conductance-based one (V;j,,, = 0V).

To fit the I, (t) data measured from the neuron circuit,
we derived the following function, from eq. (4), assuming
Iahp =0:
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where Ify, to, o, and [ are free fitting parameters. As
shown in Fig. 3(b) the fit is extremely accurate over the full
subthreshold response range.

To show the effect of the spike-frequency adaptation mech-
anism, we set the relevant bias voltages to appropriate values,
applied a step change in input with a constant input current,
and measured the neuron’s membrane potential V,ep, in
response to that. Figure 4 shows an example in which we
set Vigu, = 0.05V, Vipyr, = 0.14V, Vyp, = 2.85V. As
shown, we were able to tune the adaptation circuits in a
way to produce bursting behavior. This was achieved by
simply increasing the gain of the negative feedback adaptation
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Fig. 4. Circuit response to a step input current, with spike frequency
adaptation mechanism enabled and parameters tuned to produce bursting
behavior. The figure inset represents a zoom of the data showing the first
6 spikes.

mechanism (Vip,, > 0). In control-theory terms, this is
equivalent to going from an asymptotically stable regime to a
marginally stable one, that produces ringing in the adaptation
current I,pp,, which in turn produces bursts in the neuron’s
output firing rate. This was possible due to the flexibility of
the DPI circuits used, which allow us to take advantage of
the extra control parameter (V;p,,, in addition to V,4,) and
the possibility of exploiting its non-linear transfer function (see
eq. (3)), without requiring special tricks or dedicated resources
that alternative neuron models have to use [8]-[10].

B. Spike-based learning measurements

One of they key characteristics that distinguishes the spike-
driven learning mechanism implemented in this chip, from the
vast majority of other spike-driven or Spike Timing Depen-
dent Plasticity (STDP) learning mechanisms proposed in the
literature is its stop-learning feature [18]. Synaptic weights
are updated only if the neuron’s response to the input pattern
is ambiguous: if the input patterns presented to the neuron’s
synaptic array produce a (weighted, summed) net input current
which drives the neuron to fire either very strongly or weakly,
then no further learning occurs (the stop learning condition
is met), as it is assumed that the input pattern is successfully
classified. If on the other hand the neuron produces an in-
termediate mean output firing rate (ambiguous classification
result), then weight updates are allowed and occur following
the rule defined in [18].

In Fig. 5 we show an experiment where we stimulated a
plastic synapse with pre-synaptic Poisson distributed spikes,
using bias parameters that produce weight updates only for
sufficiently high post-synaptic mean output firing rates. The
weight was initially set to a high stable state, such that pre-
synaptic input spikes could drive the neuron to produce post-
synaptic output spikes, and the circuits were configured to
produce only downward weight updates. Figure 5 shows
an example in which learning is stopped if the post-synaptic
activity is too low (i.e. if Vo, drops below a set threshold).
When learning does occur, pre-synaptic input spikes induce
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Fig. 5. Stop-learning and weight updates. The top trace shows the post-
synaptic membrane potential; the middle trace shows the neuron’s mean firing
rate (encoded in the Vo, voltage of Fig. 2(b)); the bottom trace shows the
synaptic weight value. Bias parameters were set so that learning would stop
when V¢, dropped below the set threshold.
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Fig. 6. Long-Term Depression (LTD) transition. (a) Pre-synaptic input spikes
(bottom trace) induce downward jumps in the synaptic weight (middle trace)
when the right conditions are met by the post-synaptic membrane potential
(top trace). The spikes eventually drives the weight below the bistability
threshold at approximately ¢ = 1.5s. (b) Zoom of the synaptic weight voltage
around the transition time.

downward jumps in the V,, voltage, while the bistability
circuit drives the weight back toward its high stable state.
If a sufficient number of downward jumps drives the V,,
voltage below the bistability threshold V., then the synapse
“learns” an LTD transitions, the bistability circuit switches
polarity, and the weight is driven toward its low stable state.
This is shown in Fig. 6, where The LTD transition occurs
around 1.45s < t < 1.5s, when a burst of pre-synaptic spikes
decreases V,, significantly (see Fig. 6(b)).

A comprehensive description of these spike-driven learning
circuits, and of their (robust) performance characteristics is
provided in [13].

IV. CONCLUSION

We presented a novel conductance-based generalized 1&F
neuron circuit, derived its response properties analytically and
demonstrated its features experimentally. We showed how it is
compatible with spike-driven learning circuits and presented
preliminary results that demonstrate stop-learning and LTD ca-
pabilities. As these neuron and synapse circuits are integrated
in multi-neuron AER chips, we plan to investigate spike-
driven computation and learning properties at the network

level, and apply these devices for event-driven classification
and recognition tasks.
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