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Abstract

In this thesis, we propose BER-optimal analog-to-digital converters (ADC)

where quantization levels and thresholds are set non-uniformly to minimize

the bit-error rate (BER). This is in contrast to present-day ADCs which act as

transparent waveform preservers. We define the ADC shaping gain metric in

order to quantify the improvements. Simulations for various communication

channels show that the BER-optimal ADC achieves shaping gains that range

from 2.5 dB for channels with low intersymbol interference (ISI) to more

than 30 dB for channels with high ISI. Moreover, a 3 bit BER-optimal ADC

achieves at least as low a BER as a 4 bit uniform ADC. For flash converters,

this corresponds to a power reduction by 2×. Look-up table based equalizers

compatible with BER-optimal ADCs are shown to reduce the power up to

47% and the area up to 66% in a 45 nm CMOS process. The shaping gain

due to BER-optimal ADCs can be exploited to lower peak transmit swings

at the transmitter or decrease power consumption of the ADC.
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Chapter 1

Introduction

1.1 Overview

Traditional analog-to-digital converter (ADC) design is based on a fidelity

criterion, attempting to reconstruct the input subject to constraints such as

circuit power and process technology. The metric to be optimized, the error

between input and output, is captured by signal-to-quantization-noise ratio

(SQNR) and signal-to-noise-plus-distortion ratio (SNDR). Most ADCs today

employ uniform quantization; that is, the levels and thresholds are placed

uniformly within the signal dynamic range. As the SQNR depends strongly

on the number of bits BX of the ADC, system design leads one to determine

BX required to meet a specific SQNR or other performance specification.

Unfortunately, large values of BX lead to high power consumption, large

area, and increased input capacitance. In high-speed systems, low-power

ADCs are particularly difficult to design, and the effective number of bits

(ENOB) usually does not exceed 6 [1–3].

As uniform quantization does not take into account statistics of the in-

put signal other than the range, it does not maximize SQNR or minimize

bit error rate (BER). In the context of an ADC-based communication link

in Fig. 2.1(a) on page 10, we show the eye diagram of the received signal

xc(nT ) prior to quantization (Fig. 2.1(b)) along with its probability density

function (PDF) (Fig. 2.1(c)). Signal statistics can be exploited to assign

thresholds and levels in the ADC to improve system performance. The prob-

lem of determining the optimal set of quantization levels and thresholds was

solved in [4] and [5]. The Lloyd-Max algorithm was proposed to iteratively

determine the optimal levels r and thresholds t of a quantizer. We show in

this thesis that the Lloyd-Max algorithm improves SQNR in communication

links but does not necessarily reduce BER.
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Hence, we propose an ADC in which the levels and the thresholds are

set to minimize the BER. We term this a BER-optimal or BER-aware ADC

because it employs a detection criterion and, instead of SQNR, maximizes the

probability of detecting a transmitted bit correctly. The idea of BER-optimal

components is not novel, as BER-optimal equalizers [6,7] and sampling phase

[7] have been determined. However, this is the first work which addresses

the issue of designing BER-optimal ADCs. BER-optimal ADCs differ from

various digitally assisted ADCs [8,9] as the latter maximize SQNR.

Before delving into BER-optimal ADCs, this thesis will elaborate more on

the current state-of-art ADC designs. The detailed literature survey intends

both to illustrate critical issues in the area and to place this work in context.

1.2 Literature Survey

1.2.1 The High Speed I/O Backplane Environment

This thesis was initially motivated by the difficulty of ADC design in

modern-day high speed I/O links, links which have become bottlenecks in

chip-to-chip communication.

Due to the restriction on pin counts and the density constraints on the

number of transmission wires that can run between chips, most links are

serial in nature and operate at high frequencies. As a result, I/O links are

plagued by a variety of factors that compromise signal integrity in the multi-

gigabits-per-second regime. For example, consider the backplane link shown

in Fig. 1.1 [10]. Skin effect and dielectric loss become increasingly evident

at high frequencies; the growing resistance contributes to the lossy nature

and bandwidth limitation of the backplane traces. Additionally, via stubs

and parasitic capacitances at both the transmitter and the receiver present

impedance discontinuities to the signal. This will cause multiple reflections.

To observe the combined effects of all the non-idealities, the sampled impulse

response of one such backplane channel is plotted in Fig. 1.2. When sent

over this link, a narrow pulse becomes attenuated and dispersed (widened),

with previously transmitted symbols interfering with the current symbol in a

phenomenon termed “intersymbol interference” (ISI). Furthermore, because

high-speed links do not provide much functionality, it is undesirable to allo-
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cate too much power to these data links. This stringent power budget makes

reliable communication (BER< 10−12) even more difficult.

Chip Chip

Connector

Backplane

Trace

(Bottleneck)

Via

Figure 1.1: The backplane environment.
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Figure 1.2: Sampled impulse response of a 10 Gb/s backplane channel.

Current designs often operate in the high signal-to-noise ratio (SNR)

and ISI-dominated region. To equalize the channels, the links employ pre-

emphasis at the transmitter (TX) to cancel pre-cursor taps and decision-

feedback equalization (Fig. 1.3) at the receive (RX) side to eliminate post-

cursor ISI. Payne et al. in [11] implemented a 6.25 Gb/s binary transceiver
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in 0.13 µm that compensates for signal loss and crosstalk in legacy backplane

channels. A programmable 4-tap finite impulse response (FIR) filter followed

by a 4 bit digital to analog converter (DAC) takes care of the transmit equal-

ization, while the receiver uses a half-baud-rate adaptive decision feedback

equalizer (DFE). Total power consumed is 438 mW for the transmitter and

210 mW for the receiver.

Another work by Krishna et al. [12] presented a 0.6 to 9.6 Gb/s binary

backplane transceiver core in 0.13 µm process technology. The transmitter

has a tunable 2-tap equalizer. The receiver has an adaptive DFE that em-

ploys loop-unrolling to eliminate the tight timing constraint on the feedback

path. Furthermore, a bandwidth adapting loop at the RX side adjusts the

bandwidth based on whether the primary channel impairment is loss or high

frequency crosstalk. The core occupies 0.56 mm2 and consumes only 150

mW of power at 6.25 Gb/s.

][nx D D D

][ny

0w
1w 1Lw

][
~

Dnb 

DD

1d
2d2Ld

DFeedforward Equalizer 

Feedback Equalizer

Figure 1.3: Structure of a decision-feedback equalizer with both feedforward
and feedback taps.

A key figure of merit (FOM) for high speed I/O links is the power con-

sumption per data rate, for which numbers as low as 10 mW/Gb/s have

been reported. The greater power efficiencies of these analog, discrete time

transceivers are one of the reasons that links migrated from designs based on

analog-to-digital converters. However, as some of the recent papers indicate,

interest in ADC-based links is once again growing.
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1.2.2 High Speed ADCs

Though many transceivers in the past avoided the use of an ADC, ADC-

designs are still attractive for several reasons. First, they allow flexibility

in the data processing circuitry, which can be easily made programmable.

Second, unlike analog components that have to be re-designed for each new

process technology, digital circuits can be ported from one technology node to

another with relative ease. Both power and area scale with newer processes.

Third, an ADC-based receiver eliminates the troublesome analog feedback

loop in high speed DFEs.

Bae et al. [1] introduced a maximum likelihood sequence estimation (MLSE)

receiver to compensate for dispersion in OC-192 fiber links. The receiver in-

corporates a 12.5 Gb/s, 4 bit ADC, a phase-locked loop (PLL) that tolerates

dispersion, a 1:8 multiplexer, and the digital circuitry for the MLSE algo-

rithm. The chip was fabricated in a combination of CMOS technology and

SiGe BiCMOS. Total power dissipation was 4.5 W, with 1 W consumed by

the ADC. The digital data processing was much more sophisticated than

previous high speed link designs.

Harwood et al. from TI [2] implemented a 12.5 Gb/s SerDes in 65 nm

CMOS. It also diverged from the transceivers of past years by using a pair

4.5 bit baud rate flash ADCs. Both equalization and clock data recovery

(CDR) are done via digital signal processing. The worst case power of one

TX/RX lane is 330 mW/lane and the area is 0.45 mm2 per lane.

An even more recent joint work from Nortel and STMicroelectronics re-

ported fabricating a 24 GS/s, 6 bit ADC in 90 nm CMOS. ENOB is more

than 4.1 up to 8 GHz and more than 3.5 up to 12 GHz. The ADC core con-

sumes 1.2 W under 1 V and 2.5 V power supplies. The total area occupied

is 4×4 mm2.

One of the challenges of ADC-based high speed link designs is reducing

power dissipation.

1.2.3 BER-Optimal Components

The idea of BER-optimal components is not new, as engineers long ago

recognized the sub-optimality of the minimum mean squared error (MMSE)

metric in communication links. In the case of equalization, one of the first
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papers to consider minimum error probability DFE was [13]. However, the

work was theoretical in nature and did not present any algorithm to com-

pute the equalizer coefficients, nor did it compare the performance of the new

equalizer with the standard MMSE DFE. Yeh and Barry in [6] developed an

algorithm no more complex than the well-known least mean squares (LMS)

to adapt the coefficients of minimum-BER equalizers. The algorithm, which

was named “approximate minimum bit error rate” and abbreviated as AM-

BER, was applied to several channels to show that minimum-BER equalizers

outperform conventional MMSE equalizers.



Equalizer

][ Dnb 

w

sgn

AMBER

][nx
Channel Output





][
~

nb

Figure 1.4: The AMBER algorithm.

According to AMBER, the coefficients of a minimum-BER equalizer should

be updated as follows:

wn+1 = wn − µIn sgn{en}xn (1.1)

where n refers to the nth iteration of the update process, w the vector con-

taining L equalizer coefficients, µ the update stepsize, In the error indicator

function, and xn the corresponding vector containing current and past equal-

izer inputs [x[n], x[n−1], x[n−2] . . . x[n−L+1]]T . The AMBER algorithm is

depicted pictorially in Fig. 1.4, where D is the combined delay of the channel

and the equalizer.

A quick comparison shows that AMBER only differs from the standard

signed-LMS by the presence of an error indicator In. In other words, this
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minimum-BER algorithm only updates the equalizer coefficients when an de-

cision error has been made at the slicer. Mathematically, In can be expressed

as In = 1−b̃[n]b[n−D]
2

, where b̃[n] is the decision bit and b[n−D] is the original

transmitted bit.

Chen et al. [7] implemented a 90 nm test chip to verify an adaptation al-

gorithm that minimizes the BER instead of MMSE. The so-called minBER

algorithm steps the coefficients in three directions (increase, decrease or no

change), measures the resulting BER, and chooses one direction based on

majority vote. Because desired link BERs are usually low, accurate mea-

surement could take a long time, thereby leading to slow convergence. To

quicken the process, a target BER is specified, and a comparator with adap-

tive offset samples the DFE outputs. Whenever BER decreases during a

change in the coefficients, the offset of an adaptive sampler is increased. The

output of this adaptive sampler is XORed with the outputs of the standard

data sampler to produce a BER metric, which is then fed into the adaptive

macro. In other words, increasing the adaptive sampler offset creates more

errors to help speed up the algorithm convergence. The paper admits that

the BER metric from the XOR operation is a “pseudo BER” because output

of the data sampler is not absolutely error free. However, since the pseudo

BER has been shown to consistently follow true BER, it is considered to

be an equivalent measure for adaptation. The minBER algorithm was ap-

plied to find the optimal Tx pre-emphasis taps, Rx-DFE taps, as well as the

sampling-phase of CDR. The chip confirmed Yeh’s theoretical results. Ap-

plication of the said adaptation method to Tx-FIR leads to voltage margin

improvement of > 50%. When applied to Rx-DFE, the improvement can go

up to 10%. The paper mentioned briefly the possibility of the adaptation

strategy stalling because of a local minimum.

A separate 65 nm test chip from Chen et al. [14] demonstrated an ADC-

based SerDes receiver that adapts the clock phase based on a degraded BER

measurement, modified from the implementation in [7] . Because the true

BER is low and difficult to measure in real time, [14] uses the errors at the

DFE output when there is a static offset. In addition to the clock phase, this

implementation adapts the ADC full scale range by making the observation

that signal values which are too large or too small occur infrequently, so use

of extreme digital code can be avoided. The paper reported a 1.5 bit reduc-

tion in the ADC. Chen et al.’s approach to the ADC is still rather different
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from what is proposed in this thesis, because it only avoids overdesigns that

result when ADCs are configured to digitize the entire dynamic signal range

(specifically infrequently occurring extreme values), thereby decreasing the

quantization error. It does not perform as effectively as the BER-optimal

ADCs proposed in this thesis, or even the Lloyd-Max algorithm.

1.2.4 Digitally Assisted ADCs

Similar to BER-optimal ADCs, works in this category use digital tech-

niques to correct for static and dynamic errors in the ADC circuitry. Unlike

BER-optimal ADCs, many only take a component level view. In addition,

they maximize SQNR instead of minimizing BER. However, many digitally

assisted ADC works include circuit-level models that can be incorporated

into the future research on BER-optimal ADCs.

W. Liu et al. [15] implemented a successive-approximation register (SAR)

ADC array that, by extensive use of digital techniques, maintains 7.5 ENOB

and a 65 dB SFDR at 600 MS/s while only consuming 23 mW of power.

The design contains 10 parallel ADC lanes, every one consuming little power

and clocked at only 60 MS/s. The output of each path is processed by a 10-

tap adaptive digital linear filter. A reference ADC updates these adaptive

digital filters via LMS algorithm at a much lower frequency. This adaptation

allows the ADC to track process, voltage, and temperature variations. By

effectively treating the path-mismatch problem among the time-interleaved

ADC arrays and by correcting for nonlinearities, the ADC is able to achieve

very good SFDR.

Nikaeen and Murmann also attacked errors and nonlinearities in ADCs

[9], but they focused mainly on dynamic acquisition at the A/D front-end.

The paper first presented a compact model of the nonidealities and then

proceeded to derive an inverse model to correct them. Training signals and

the least square (LS) algorithm are used to obtain the coefficients of the said

inverse model. It was shown by Matlab simulations that more than 40 dB of

improvement in SFDR can be achieved. When the algorithm was tested in

a commercial 14 bit ADC, SFDR exceeded 83 dB up until 470 MHz.

8



1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents an

algorithm for computing BER-optimal levels and thresholds. Section 2.4

compares the performance of the BER-optimal and traditional ADCs via

simulations for different channels. Chapter 3 presents a partial implemen-

tation of a BER-Optimal ADC Receiver. Chapter 4 concludes the thesis by

outlining future research directions.

9



Chapter 2

BER-Optimal ADC

2.1 System Description

Driver
Channel

h(t)

Noise 

v(t)

b[n] b᷉[n-D]ADC
Digital 

Equalizer

slicerx[n] y[n]xc(t)

CDR

CLK

r w

(a)

Q

1/T
Quantizer

ADC

CLK

xc(t) x[n]

xc(nT)

r

(b)

1

0

PDF of xc(nT)

(c)

Figure 2.1: Role of an ADC in a communication link: (a) block diagram of
a communication link, (b) functional diagram of an ADC, and (c) eye
diagram and PDF of the sampled received signal xc[nT ].

Figure 2.1(a) illustrates an equalized communication link. Assuming bi-

nary phase shift keying (BPSK) modulation, the transmitter sends pseudo-

random sequence of bits b[n] ∈ {±1} through the channel. At the receiver,

the ADC quantizes the signal, and the outputs are subsequently processed

by a digital equalizer to eliminate ISI that results from the bandlimited chan-

nel. A slicer following the equalizer makes a hard decision on which bit has

been transmitted. With a slight abuse of notation, we refer to the BPSK

10



symbols as bits in the sequel. As shown in Fig. 2.1(b), the ADC consists of

a baud-rate sampler followed by a quantizer.

ADCs convert a continuous-time, continuous-amplitude signal xc(t) to

discrete-time, discrete-amplitude x[n] so that it can be processed later by

digital hardware. As such, it involves both sampling and quantization (Fig.

2.1(b)). The sampling operation is represented by xc(t)|t=nT , where T is the

sampling period, and xc(nT ) the continuous-amplitude, discrete-time value.

However, since sampling is not the topic of this thesis, we assume it to be

perfect and focus on determining BER-optimal quantizer parameters.

At a given sampling instant t = nT , assuming a sampler with sufficient

bandwidth, the input xc[n] = xc(nT ) to the ADC is given by

xc[n] =
M−1∑
i=0

h[i]b[n− i] + v[n], (2.1)

where b[n] is the transmitted bit, h[i] the baud-rate sampled impulse response

of the channel with memory M , and v[n] is modeled as additive white Gaus-

sian noise with variance σ2.

The ADC has N levels rk (k = 1, . . . , N) and N − 1 thresholds tk (k =

1, . . . , N − 1), where N is equal to 2BX . The mapping between xc[n] and the

quantized signal x[n] is

x[n] = r1 if xc[n]ε(−∞, t1]

= rN if xc[n]ε(tN−1,∞) (2.2)

= rk if xc[n]ε(tk−1, tk] for k = 2, . . . , N − 2.

Following the ADC is a L-tap linear equalizer. Its output will be the

convolution of ADC outputs and equalizer coefficients w, i.e.,

y[n] =
L−1∑
j=0

w[j]x[n− j]. (2.3)

The slicer is a symbol-by-symbol memoryless device. Therefore, the es-

timate of the transmitted symbol b[n −D] is b̃[n −D] = sgn(y[n]). Here D

is introduced to account for delay in the channel and equalizer; it must be

chosen carefully to achieve a good BER.
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2.2 ADC Based on Fidelity Criterion

The ADC approximates its continuous-amplitude, discrete-time input

xc(nT ) = xc[n] with a finite set of levels according to (2.3). In doing so,

it introduces quantization error. Let

x[n] = xc[n] + q[n] (2.4)

where x[n] is the ADC output, xc[n] the continuous-amplitude, discrete-time

input, and q[n] the quantization error.

From [16], as long as quantization step-size ∆ = 2Vmax
N

is small, the fol-

lowing three assumptions can be made regarding q[n]:

1. q[n] is a sample sequence from a stationary random process.

2. q[n] is uncorrelated with the input signal sequence xc[n].

3. q[n] is an uncorrelated sequence.

If we define σ2
x = E[(x[n]−E[x[n]])2] to be signal power and σ2

q = E[q2[n]]

to be variance of quantization noise, then the signal-to-quantization-noise

ratio (SQNR), a commonly used performance metric for quantizers, is given

by

SQNR = 10 log10 (
σ2
x

σ2
q

). (2.5)

ADCs designed today act as transparent waveform preservers, which min-

imize E[q2[n]] (i.e., maximize SQNR) subject to constraints such as circuit

power and process technology. Such ADCs are designed based on a fidelity

criterion.

2.2.1 Uniform ADC

In a uniform ADC, the quantization levels and thresholds are spread

evenly within the signal dynamic range. The minimum and maximum in-

put amplitudes expected by this ADC are expressed as −Vmax and Vmax,

respectively. The quantizer step-size is ∆ = 2Vmax
N

= 2Vmax
2BX

[16]. For suf-

ficiently small quantization error, q[n] = xc[n] − x[n] is assumed to be a

uniformly distributed random variable, bounded between −∆
2

and +∆
2

and

12



independent of input (Figure 2.2). In the following, we drop the time-index

n because quantization is done in a memoryless fashion. Quantization noise

power σ2
q = E[q2[n]] is given by

E[q2] =
∫ ∆

2

−∆
2

q2 1

∆
dq

=
∆2

12
. (2.6)

1/∆

-∆/2 ∆/2

q

fQ(q)

Figure 2.2: Probability density function of quantization error. Q is the
random variable representing quantization error q[n], and fQ(q) is its PDF.

Combining (2.5) and (2.6), SQNR can be calculated as

SQNR(dB) = 6.02BX + 4.8− 20 log10

Vmax
σx

, (2.7)

where each additional bit increases SQNR by 6 dB.

2.2.2 Nonuniform ADC Lloyd-Max Quantizer

A Lloyd-Max Quantizer [4,5] minimizes the distortion measure known as

the mean-squared error E(q2) (MSE), given by

E(q2) = E[(xc − rk)2]

=
N∑
k=1

∫ tk

tk−1

(xc − rk)2fXc(xc)dxc, (2.8)

where Xc is the random variable representing input xc, fXc(xc) is its PDF,

and t0 and tN equal −∞ and +∞, respectively.

13



Stationary points of the MSE E(q2) in terms of r and t, where r and

t are ADC quantization levels and thresholds, can be found by setting the

gradient of 2.8 with respect to r to zero, i.e.,

∂E(q2)

∂rk
= 0. (2.9)

Because fXc(xc) is independent of the quantizer parameters, rk,opt can be

readily calculated:

∂E(q2)

∂rk
= −2

∫ tk

tk−1

(xc − rk)fXc(xc)dxc (2.10)

Setting ∂E(q2)
∂rk

to zero,

∫ tk

tk−1

xcfXc(xc)dxc = rk

∫ tk

tk−1

fXc(xc)dxc

rk =

∫ tk
tk−1

xcfXc(xc)dxc∫ tk
tk−1

fXc(xc)dxc
. (2.11)

(2.12)

Given rks, the optimal tks minimizes squared error (xc − rk)2. In other

words, each input xc should be mapped to the closest rk,

tk =
rk + rk+1

2
. (2.13)

Thus, rk,opt and tk,opt are

rk,opt =

∫ tk,opt
tk−1,opt

xcfXc(xc)dxc∫ tk,opt
tk−1,opt

fXc(xc)dxc
, (2.14)

tk,opt =
rk,opt + rk+1,opt

2
. (2.15)

Equation (2.15) implies that tk,opt lies halfway between adjacent optimal

quantization levels, and rk,opt is the conditional mean of Xc conditioned on

the event that input xc[n] lies between tk−1 and tk.

Equation (2.14) is difficult to solve analytically. The Lloyd-Max algo-

rithm is an iterative procedure used to determine r and t. It alternatively

optimizes thresholds t for a given set of levels r, and then re-computes the

levels for the new set of thresholds. Until the MSE converges, this process is

14



repeated. Figure 2.3(a) shows quantization levels r obtained via the Lloyd-

Max algorithm for the outputs of an artificial channel, superimposed on top

of the PDF of the channel outputs. In accordance with (2.15), more levels

are placed around “peaks” in the PDF, and fewer are needed in other regions.

The improvement in SQNR is shown in Figure 2.3(b).

Although this algorithm improves SQNR, we find that it is not the same

as minimizing BER. For channels with high ISI, it provides less SQNR gain

(Figure 2.4).

2.3 BER-Optimal ADC

In a communication link, the Lloyd-Max algorithm is still suboptimal,

because the ADC is based on a fidelity criterion. While SQNR is improved,

such a scheme ignores the fact that the ADCs are part of a detection process,

thereby leading to over-designs that are power-hungry. Hence, we propose an

ADC in which the levels and the thresholds are set to minimize the BER. We

term this a BER-optimal or BER-aware ADC because it employs a detection

criterion and, instead of SQNR, maximizes the probability of detecting a

transmitted bit correctly.

We will motivate BER-optimal ADCs using two examples before consid-

ering the entire communication link.

2.3.1 AWGN Channel, ADC Only

The first system to be analyzed is presented in Fig. 2.5, which differs

from 2.1(a) by the absence of the equalizer and the slicer.

Let the channel be a simple AWGN channel. That is, h = [1], and D = 0.

We wish to choose b̃[n] that has the larger a posteriori probability, i.e.,

b̃[n] = 1 if P{b[n] = 1 | xc[n]} > P{b[n] = −1 | xc[n]}

= −1 otherwise. (2.16)

P{•} signifies the probability of an event, and P{b[n] | xc[n]} is the a poste-

riori probability of b[n] conditioned on having observed the received signal

15
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Figure 2.3: Lloyd-Max vs. uniform ADC: (a) placement of levels for 3 bit
uniform and Lloyd-Max ADCs, and (b) improvement in SQNR by
Lloyd-Max over uniform quantization. BPSK signal is sent through channel
[−0.5 1 − 0.5]. Noise is modeled as AWGN.
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Lloyd-Max over uniform quantization. BPSK signal is sent through a FR4
backplane channel. Noise is modeled as AWGN.
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Figure 2.5: Simplified artificial communication link.

xc[n].

Using Bayes rule,

P{b[n] = 1 | xc[n]} =
P{xc[n] | b[n] = 1}P{b[n] = 1}

P{xc[n]}

P{b[n] = −1 | xc[n]} =
P{xc[n] | b[n] = −1}P{b[n] = −1}

P{xc[n]}
. (2.17)

Under the original assumption that the transmitted bits are i.i.d. and

using (2.17), (2.16) simplifies to

b̃[n] = 1 if P{xc[n] | b[n] = 1} > P{xc[n] | b[n] = −1}

= −1 otherwise. (2.18)

P{xc[n] | b[n] = 1} and P{xc[n] | b[n] = −1} are dependent on statistical

knowledge of the channel noise, which is modeled as additive white Gaussian.

Thus, (2.16) can be re-written as

b̃[n] = 1 if
1√

2πσ2
1

e
− (xc[n]−1)2

2σ2
1 >

1√
2πσ2

2

e
− (xc[n]+1)2

2σ2
2

= −1 otherwise. (2.19)

To stay general, σ2
1 and σ2

2 are not assumed to be equal. The inequality can

be solved analytically.

When σ2
1 = σ2

2, (2.19) becomes

b̃[n] = 1 if xc[n] > 0

= −1 otherwise. (2.20)
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Therefore, the ADC threshold should be set to 0.

When σ2
1 6= σ2

2, the optimal ADC threshold should be set to

σ2
1 + σ2

2 +
√

4σ2
1σ

2
2 + 2σ4

1 ln(σ1

σ2
)σ2

2 − 2σ4
2 ln(σ1

σ2
)σ2

1

−σ2
1 + σ2

2

or

σ2
1 + σ2

2 −
√

4σ2
1σ

2
2 + 2σ4

1 ln(σ1

σ2
)σ2

2 − 2σ4
2 ln(σ1

σ2
)σ2

1

−σ2
1 + σ2

2

, (2.21)

whichever value that lies between +1 and −1.

2.3.2 Channel with ISI and Additive White Gaussian
Noise, ADC Only

We again consider Figure 2.5, but now the channel has a memory of

M symbols. Without any loss of generality, we assume D = 0 in order

to simplify notation. Again, we wish to choose b̃[n] that has the larger a

posteriori probability, i.e.,

b̃[n] = 1 if P{b[n] = 1 | xc[n]} > P{b[n] = −1 | xc[n]}

= −1 otherwise. (2.22)

Using Bayes rule and under the original assumption that the transmitted

bits are i.i.d. and using (2.17), (2.22) simplifies to

b̃[n] = 1 if P{xc[n] | b[n] = 1} > P{xc[n] | b[n] = −1}

= −1 otherwise. (2.23)

P{xc[n] | b[n] = 1} and P{xc[n] | b[n] = −1} are dependent on statistical

knowledge of the channel noise, which is modeled as additive white Gaussian,

and on the previous M − 1 transmitted bits. Thus,

P{xc[n] | b[n] = 1} =
1√

2πσ2
e−

(xc[n]−h[0]−
M−1∑
i=1

h[i]b[n−i])2

2σ2

P{xc[n] | b[n] = 1} =
1√

2πσ2
e−

(xc[n]+h[0]−
M−1∑
i=1

h[i]b[n−i])2

2σ2 . (2.24)
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Previously M−1 transmitted bits b[n−(M−1)], b[n−(M−2)], . . . , b[n−1]

are unavailable. However, because each bit assumes values of +1 and −1 with

probability 1
2
, there are the 2M−1 possible equally likely values of

M−1∑
i=1

h[i]b[n−
i].

Therefore, (2.24) can be written as

b̃[n] = 1 if 2−M+1
∑

b[n−1]∈{±1}
. . .

∑
b[n−M+1]∈{±1}

1√
2πσ2

e

(xc[n]−
M−1∑
i=0

h[i]b[n−i])2

−2σ2 >

2−M+1
∑

b[n−1]∈{±1}
. . .

∑
b[n−M+1]∈{±1}

1√
2πσ2

e

(xc[n]+h[0]−
M−1∑
i=1

h[i]b[n−i])2

−2σ2

= −1 otherwise. (2.25)

Since the channel has M terms, it will generate 2M number of possible

noiseless outputs. Let {q1, q2, q3, . . . , q2M−1 , . . . , q2M} be the set of channel

outputs. Q1 = {q1, q2, q3, . . . , q2M−1} correspond to b[n] being 1, and Q0 =

{q2M−1+1, q2M−1+2, . . . , q2M} correspond to b[n] being −1; then (2.25) can be

expanded to be a summation of 2M−1 exponential terms on either side of the

inequality.

b̃[n] = 1 if 2−(M−1) 1√
2πσ2

 ∑
q∈Q1

e−
(xc[n]−q)2

2σ2

 >

2−(M−1) 1√
2πσ2

 ∑
q∈Q0

e−
(xc[n]−q)2

2σ2


= −1 otherwise. (2.26)

With Max-Log approximation, (2.26) becomes a comparison between

min
(
(xc[n]− q1)2, (xc[n]− q2)2, . . . , (xc[n]− q2M−1)2

)
and

min
(
xc[n]− q2M−1+1)2, (xc[n]− q2M−1+2)2, . . . , (xc[n]− q2M )2

)
.

In other words, this is the comparison between the Euclidean distances
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from the received voltage xc[n] to the nearest noiseless channel outputs cor-

responding to b[n] being −1 and +1, respectively.

Therefore, Equation (2.25) shows that in the case of no equalization,

when the PDF of the received signal is known, the optimal thresholds of the

ADC should be set to where b[n] transitions from 1 to −1 or vice versa, in

the middle between the appropriate adjacent noiseless channel outputs. The

number of required thresholds to achieve minimum BER is dictated by the

number of such transitions. Contrasts this with the Lloyd-Max algorithm. It

often places thresholds between adjacent modes but makes no distinction for

transition of bits; furthermore, it is rather ambiguous with the placement of

thresholds for optimal BER. In cases where the aforementioned 1 to −1 and

−1 to 1 transitions are few, ADCs based on detection criterion would show

a distinct advantage.

To illustrate (2.25), consider a channel with taps h = [0.6, 1, 0.6]T , which

results in the PDF shown in Figure 2.6. For this channel, Q1 = {−2.2,−1, 0.2}
and Q0 = {−0.2, 1, 2.2}. ADC optimal thresholds are therefore set at −0.6,

0, and 0.6. Only three thresholds are sufficient.

Figure 2.6 plots additionally uniform and Lloyd-Max thresholds. They

are quite different from the optimal ADC thresholds.
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Figure 2.6: Output PDF of channel [0.6, 1, 0.6].
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Unfortunately, in real communication links where ISI can be quite severe

and channel memory is large, post-processing after the ADC is required.

This impacts the assignment of levels and thresholds. Channels that require

equalization are the main interest and will be discussed for the rest of the

thesis.

2.3.3 Channel with ISI and Additive White Gaussian
Noise, ADC and Linear Equalizer

We propose quantization based on the detection criterion, by setting the

levels r and thresholds t non-uniformly using the BER metric. In the system

presented in Fig. 2.1(a), an error is made when b̃[n] 6= b[n] (assuming D = 0),

so BER is computed by averaging over all possible values of equalizer output

y[n] and hence all equalizer input vectors xn = [x[n], x[n−1], ..., x[n−L+1]]

such that b̃[n] = sgn(y[n]) = sgn(wTxn) produces an error at the slicer. To

this end, we define an error indicator
(

1−b[n]b̃[n]
2

)
. It is 1 when the slicer

makes an error and 0 otherwise. Thus, BER is computed by summing the

probability of all y[n] corresponding to non-zero error indicator (2.27):

BER = P{b[n] 6= b̃[n]}

=
∑
y[n]

[
P{y[n]}

(
1− b[n]b̃[n]

2

)]
(2.27)

=
∑
xn

L−1∏
j=0

P{x[n− j] = rk}

(1− b[n]b̃[n]

2

)
(2.28)

where P{x[n− j] = rk|xc0[n− j]} is given by

Q

(
tk−1 − xc,0[n− j]

σ

)
−Q

(
tk − xc,0[n− j]

σ

)
, (2.29)

P{•} was defined before, Q(•) is the Gaussian Q function, and xc0[n] is

noiseless channel output
M−1∑
i=0

h[i]b[n− i]. The equalizer output b̃[n] is given
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by

b̃[n] = sgn

L−1∑
j=0

w[j]x[n− j]

 . (2.30)

A BER-optimal ADC is one where r and t are chosen to minimize (2.27).

2.3.4 Gradient Descent

A closed form expression for the BER optimal parameters r and t of the

ADC is difficult to obtain due to the highly non-linear objective function

(2.27). Therefore, we employ the gradient descent algorithm to determine

the parameters. The following update equations are used to compute r iter-

atively. For the ith iteration of the algorithm, we have

BER = f(h, r, t,w, σ) (2.31)

ri = ri−1 + µ

(
∂BER

∂r

)
|r=ri−1

≈ ri−1 + µ
(

∆BER

∆r

)
. (2.32)

The placement of t remains the same as given by (2.15) to reduce search

complexity. To avoid differentiating the sign function, the gradient is com-

puted by finite differences—each entry in the gradient vector is obtained by

perturbing the rk’s one at a time and computing the change in BER due to

this perturbation [17].

The algorithm can be summarized as follows:

Step 1. Initialize the ADC parameters r and t appropriately.

Step 2. Estimate the gradient vector by computing finite differences.

Step 3. Update r using (2.32).

Step 4. Repeat Steps 2 and 3 until BER converges, i.e. when the difference in

the BER between adjacent runs is less than a specified value.

We demonstrate next through simulations that the BER-optimal ADC

outperforms the uniform and Lloyd-Max quantization approaches.
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2.4 BER-Optimal ADC Simulation Results

This section presents simulation results for several channels with different

levels of ISI.

2.4.1 Methodology

The process is described pictorially by Fig. 2.7.

First, given a sampled channel impulse response, a minimum mean squared

error (MMSE) linear equalizer with three taps is obtained assuming a uni-

form ADC. Next, (2.32) was used to iteratively approximate the minimum

BER thresholds and representation levels for the ADC. Equation (2.27) was

then used to compute the BER analytically. We verified our expressions via

Monte Carlo simulations and error counting for BER down to 10−7. In order

to isolate the effect of nonuniform quantization, the equalizers in all setups

are MMSE linear equalizers with 3 taps. In addition, only equalizer inputs

are quantized; the equalizer itself has infinite precision. Receiver signal-to-

noise ratio (SNR) was computed by SNR =
M−1∑
i=0

h[i]2

σ2 .

MMSE

Equalizer

(Analytical)

Gradient

Descent

System 

Simulation

BER by 

analytical 

expression

BER by 

counting

{rk}

MMSE

Equalizer

(LMS)

Compare Compare
{tk}

Figure 2.7: Simulation setup and verification of results.

To quantify the reduction in SNR achieved via the BER-optimal tech-

niques, we define the ADC shaping gain SG at a given BER as

SG(BER) = SNRold(BER)− SNRnew(BER). (2.33)

ADC shaping gain is defined in the same fashion as coding gain, which

measures the difference between uncoded system SNR and coded system
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SNR needed to achieve the same BER.

In the case of channels with large memory M , small taps are truncated

to reduce complexity of gradient search (the term “small” is being defined as

less than 10% of the magnitude of the main channel tap). The initialization

point for the algorithm is the uniform quantizer for low signal SNR, and the

resulting new quantizer serves as the initialization point for higher SNRs to

avoid suboptimal local minimum points.

2.4.2 Results

BER-Optimal ADC vs. Uniform ADC

Figures 2.8, 2.9, and 2.10 demonstrate the algorithm of (2.32) applied

to a variety of channels, all of which were derived from models provided

by the IEEE standard 802.3ap and Intel. The plots are arranged in the

order of increasing intersymbol interference, characterized by the ratio I =
h2
imax∑M−1

i=0,i6=imax
h2
i

, where hi,max is the cursor tap (Fig. 1.1). Large values of I

imply low ISI. In all runs, the equalizer is an MMSE FIR filter with 3 taps,

derived assuming an uniform ADC with the indicated number of bits in the

front.

1) Channel with low level of ISI (Fig. 2.8(a)): Fig. 2.8(b) shows that a 3

bit BER-optimal ADC performs better than a 3 bit uniform ADC. Further-

more, a 3 bit BER-optimal ADC is at least as effective as a 4 bit uniform

ADC. The BER curve for an infinite precision ADC, infinite precision equal-

izer is also displayed for comparison purposes. In both the low and high SNR

regimes (BER=10−4 and 10−15, respectively), the shaping gain SG achieved

by the BER-optimal ADC is 2.5 dB.

2) Channel with medium level of ISI (Fig. 2.9(a)): Fig. 2.9(b) shows

that a 3 bit BER-optimal ADC is at least as effective as a 4 bit uniform

ADC. Compared to a 3 bit uniform ADC, ADC shaping gain SG is 3 dB at

BER = 10−4 and increases to 4.5 dB at BER = 10−15.

3) Channel with high level of ISI (Fig. 2.10(a)): When channels with

high levels of ISI are employed for testing, the 3 bit BER-optimal ADC is

significantly better than the 3 bit uniform ADC as shown in Fig. 2.10(b).

In this case, performance of the 3 bit uniform ADC does not improve with
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Figure 2.8: Performance for a low-ISI channel, I=3.5: (a) trimmed sampled
impulse response of an FR4 backplane channel, and (b) BER vs. SNR
curves for a 3 bit uniform, 3 bit BER-optimal, 4 bit uniform, and
infinite-precision ADC, respectively.

26



1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time Index n

h[
n]

(a)

12 14 16 18 20 22 24 26 28 30

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

SNR(dB)

B
E

R

 

 

3Bit Uniform
3Bit Nonuniform
4Bit Uniform
Infinite Precision ADC

4.5dB ADC
Shaping Gain

3dB ADC Shaping Gain

3b BER−Optimal = 4b
Uniform

(b)

Figure 2.9: Performance for a medium-ISI channel, I=2.55: (a) trimmed
sampled impulse response of an FR4 backplane channel, and (b) BER vs.
SNR curves for a 3 bit uniform, 3 bit BER-optimal, 4 bit uniform, and
infinite-precision ADC, respectively.

27



1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time Index n

h
[n

]

(a)

15 20 25 30 35

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

SNR (dB)

B
E

R

 

 

3Bit Uniform

3Bit BER−Optimal

4Bit Uniform

Infinite Precision ADC

3b BER−Optimal
= 4b Uniform

3dB ADC 
Shaping
Gain Over
4b Uniform

(b)

Figure 2.10: Performance for a low-ISI channel, I=1.5: (a) trimmed
sampled impulse response of an FR4 backplane channel, and (b) BER vs.
SNR curves for a 3 bit uniform, 3 bit BER-optimal, 4 bit uniform, and
infinite-precision ADC, respectively.

28



increasing SNR due to severe quantization noise. Compared to a 3 bit uni-

form ADC, ADC shaping gain SG is too large to be quantified; compared to

a 4 bit uniform ADC, SG(BER = 10−15) = 3 dB.

The data are summarized in Table 2.1.

Table 2.1: Shaping gain of BER-optimal ADC for I/O channels with
different ISI

ISI Level I BER = 10−4 BER = 10−15

3.5 2 dB 3 dB
2.55 3 dB 4.5 dB
1.5 > 30 dB > 30 dB

BER-Optimal ADC vs. Lloyd-Max ADC

The BER-optimal ADC is based on the detection criterion, while uniform

and Lloyd-Max ADCs are both based on the fidelity criterion. Although a

Lloyd-Max ADC can improve SQNR, Fig. 2.11 shows that a 2 bit Lloyd-Max

ADC followed by a MMSE linear equalizer results in little improvement in

BER when compared with a 2 bit uniform ADC followed by a MMSE LE.

This observation indicates that SQNR is not the best metric when the goal

is to reduce BER. In contrast, a receiver based on the detection criterion

(2 bit BER-optimal ADC followed by min-BER linear equalizer, where the

equalizer coefficients are computed in a similar manner as in (2.32) using

gradient descent algorithm) results in significant improvement, surpassing

even a 3 bit uniform ADC for SNR > 16 dB. This clearly demonstrates that

the detection criterion is a more effective metric than the fidelity criterion in

communication links.

BER as a Function of BX

This section examines two relationships: improvement achievable by BER-

optimal nonuniform quantization versus number of quantization bits and

BER improvement versus signal SNR. Figure 2.12 shows the simulation re-

sults. 18 dB and 24 dB are the two chosen signal SNRs because they cor-
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Figure 2.11: Performance comparison between the BER-optimal and
Lloyd-Max ADC for a synthetic channel h = [0.1 0.7 0.4].

respond to BER ranges needed for satisfactory operation in FEC-based and

non-FEC high I/O links, respectively.

In the case of too few bits, BER-optimal quantization and uniform quanti-

zation are equally ineffective. A large amount of quantization noise prevents

the receiver from correctly detecting the transmitted bit. When resolution

is high, the BER gap closes. It is in the intermediate region that the BER

improvement by using BER-optimal quantization is the greatest. Also, Fig-

ure 2.12 shows that BER can be greatly reduced when the signal is not as

corrupted by noise. To quantify this improvement, a ratio
BERuniform

BERnonuniform
is

defined, and the values are presented in Table 2.2

Table 2.2: Log
BERuniform

BERnonuniform
as a function of quantization bits and SNR

Bits Signal SNR of 18 dB Signal SNR of 24 dB
1 0 0
2 1.4 3.3
3 1.1 3.4
4 0.1 1.9
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Figure 2.12: BER-optimal vs. uniform quantization for different numbers of
bits and SNRs.

Predicting Conditions for Maximal Reduction in BER

To predict conditions for maximal BER reduction, this subsection ana-

lyzes noise that contributes to errors in a communication link.

Driver
Channel

h(t)

Noise 

v(t)

b[n] b᷉[n-D]ADC
Digital 

Equalizer

slicerx[n] y[n]xc(t)

CDR

CLK

r w

Figure 2.13: Noise sources at the slicer of a communication link.

There are three noise sources at the slicer, indicated by the thick arrow

in Fig. 2.13: additive Gaussian noise that has been amplified by the linear

equalizer, residual ISI, and quantization noise introduced by the ADC, also

amplified by the equalizer. They are assumed to be independent of one

another. We denote the respective noise variances as σ2
v,slicer, σ

2
I,slicer, and

σ2
q,slicer and compute them as follows:
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σ2
v,slicer = σ2

∑
w2
j ,

σ2
I,slicer = σ2

s

∑
p2
j,j 6=max,

σ2
q,slicer =

V 2
max

12×22BX−2

∑
w2
j , (2.34)

where wjs are MMSE linear equalizer coefficients, σ2 the additive Gaussian

noise variance before the receiver, σ2
s the signal power as set by the trans-

mitter swing, pjs the composite channel coefficients obtained by convolving

the channel and the equalizer, pj,j 6=maxs are all taps of the composite channel

except for the largest, and Vmax is the maximum value expected by the ADC.

Noise analysis is done accordingly for two channels (Fig. 2.8(a) and

2.10(a)); the variances are plotted as a function of ADC quantization bits

in Fig. 2.14 and 2.15. For Channel 1, quantization noise is dominant when

ADC has less than 2.5 bits and signal SNR is 18 dB. At 24 dB, this crossover

point between quantization noise and the total sum of Gaussian noise plus

residual ISI shifts to 3 bits. Similar trend is observed for Channel 2.

BER-optimal quantization should be most effective when the quantization

error is the dominant noise source. Maximal BER reduction in theory occurs

in low noise regions, where because of the waterfall nature of the Q-function,

increasing signal-to-noise ratio by either using more signal power or reducing

noise power exponentially decreases the probability of error. Tables contain-

ing
BERuniform

BERnonuniform
numbers (Tables 2.2 and 2.3) for different quantization bits

and SNRs show that this is indeed the case. The maximum improvement in

BER occurs at the largest integer number of bits not greater than the x-axis

coordinate of the crossover point between the noise variances.

Table 2.3: Log
BERuniform

BERnonuniform
as a function of quantization bits and SNR for

channel in Fig. 2.10(a)

Bits Signal SNR of 18 dB Signal SNR of 28 dB
0 0 0
2 0.6 1
3 0.4 2.5
4 0.04 1.6
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Figure 2.14: Noise sources at the slicer of a communication link: (a) SNR =
18 dB, and (b) SNR = 24 dB.
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Figure 2.15: Performance for a medium-ISI channel, I=2.55: (a) trimmed
sampled impulse response of an FR4 backplane channel, and (b) BER vs.
SNR curves for a 3 bit uniform, 3 bit BER-optimal, 4 bit uniform, and
infinite-precision ADC, respectively.
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Chapter 3

Implementation of a
BER-Optimal ADC Receiver

Implementation of the BER-optimal ADCs is not straightforward. Once the

optimal r and t are obtained, the crucial issue that must be addressed is

the representation of the output values. Since the quantization levels are

no longer equidistant, a change in digital output will correspond to different

changes in analog input. The equalizer cannot operate directly on such digital

outputs.

To interface the BER-optimal ADCs and the digital equalizer, we must

perform some digital linearization; i.e., we must represent the ADC outputs

with more bits, or modify the equalizer. Unfortunately, either introduces

more circuit blocks that must be carefully designed for high speed operation.

Furthermore, in case of digital linearization, more data bits would increase

the gate count as well as critical path delay of the equalizer.

To avoid these design problems, one option is to replace the standard

digital equalizer with a look-up table (LUT). This is done by mapping the

ADC bits in the tapped-delay line directly to a binary value corresponding to

the detected bits. The result therefore has the same function of an equalizer

and slicer.

We synthesized the digital equalizer following the BER-optimal ADC and

compared its complexity to that of the standard linear equalizer (Fig. 3.1).

Not only does the LUT occupy less area and consume less power, it also

avoids the interface problem between the BER-optimal ADCs and digital

equalizers.

The channels are those presented in Section 2.4.1; for each channel, two

design points in the plots, corresponding to low and high input SNRs, are

synthesized and compared. The BER-optimal ADCs have 3 bits, while the

benchmark is a 4 bit uniform ADC, 3-tap linear equalizer, with sufficient

bits assigned to equalizer coefficients to ensure no BER degradation due

to coefficient quantization at BER of 10−4. From Table 3.1, we see that
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Figure 3.1: Finite precision FIR filter.

the LUT-based equalizer is in fact much simpler than the conventional FIR

filter, indicating that BER-optimal ADCs are superior. The area and power

numbers are provided by synthesis reports from Nangate’s Open 45 nm Cell

Library. At low SNR design point for the high ISI channel, the standard LE

occupies 269.7 µm2 , while area of the LUT-based equalizer is only 91.5 µm2.

This is a reduction of 66%. To summarize, for low SNRs, the area of the

LUT-based equalizer is reduced by 55% to 66%, and power is reduced by

about 45%. For high SNRs, the area of the LUT-based equalizer is reduced

by 39% to 56%, and power reduction is around 24% to 32%. Global voltage

of 0.95 V and clock frequency of 400 MHz are used.

Table 3.1: Comparing complexity of LUT-based equalizer with LE

Low ISI Channel Fig. 2.8
SNR (dB) Cell Area (µm2) Power (µW)
10 (LUT) 108 22.2
10 (LE) 244.4 40.5
18 (LUT) 106 22.7
18 (LE) 177 29.9
High ISI Channel Fig. 2.10
SNR (dB) Cell Area (µm2) Power (µW)
12 (LUT) 91.5 22.6
12 (LE) 269.7 43.0
24 (LUT) 93 23.1
24 (LE) 209 34.4
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Chapter 4

Conclusion

This thesis introduced the novel idea of BER-optimal ADCs, which unlike

past ADC designs, use a detection criterion instead of a fidelity criterion. An

analytical expression for bit error rate was presented for a communication link

in which the receiver consists of an ADC, LE/DFE, and slicer. Subsequently

a gradient-descent algorithm was developed to numerically determine levels

and thresholds that minimize bit error rate.

BER-optimal quantization is applied to several channel models with vary-

ing degrees of ISI. The results all demonstrate the efficacy of an ADC based

on a detection criterion, indicating a promising direction for future designs.

In all cases, a 3 bit BER-optimal ADC achieves at least as low a BER as a 4

bit uniform ADC. Shaping gains achieved by the BER-optimal ADC range

from 2.5 dB for channels with low ISI to more than 30 dB for channels with

high ISI. For high speed flash architecture, a 1 bit reduction corresponds a

power reduction by 2×. Additionally in the second half of Chapter 2, noise

sources at the slicer were analyzed in order to predict the conditions under

which the new approach would bring maximum BER reduction.

Chapter 3 presents a feasibility study for the BER-optimal ADCs. Look-

up table based equalizers compatible with BER-optimal ADCs are shown

to reduce the power up to 47% and the area up to 66% in a 45 nm CMOS

process.

4.1 Future Work

There are many interesting directions to explore.

One direction would extend the concept of BER-optimal ADC to link

systems with decision feedback equalizers and channels with “notches” or

nulls (channel whose amplitude spectrums evidence a dip). Moreover, to
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prove the concept of BER-optimal ADCs, all equalizers in this work are

fixed MMSE equalizers. To achieve optimal performance, however, equalizer

and ADC should be ideally jointly adapted.

Thus far, the work has only concerned itself with quantization and not

sampling. The next logical step would be to include bandwidth limitations

and nonlinearity in the track-and-hold circuitry of the ADC. The models of

[9], for example, can account for nonlinearity arising from switch resistances

and memory caused by a dependency on the signal slope.

As the current objective function is highly nonlinear, finding an alterna-

tive function that closely approximates the original but is highly differentiable

can help to improve the gradient descent algorithm.

Finally, though the LUT-based equalizer is much simpler than conven-

tional finite precision equalizers, it is not adaptable. Making it reconfigurable

or adaptable would increase its practicality.
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Appendix

Channel Sampled Time
Impulse Responses

Following are tap coefficients of FR4 backplanes sampled at 10 Gb/s.

Channel 1 Sampled Time Impulse Response

Following is a FR4, 1.25 in, middle layer stripline. The linecards are made

from Nelco 4000-13 routed in top and middle layers. Frequency response

data are provided by IEEE802.3ap Standard.

0.1154 0.4503 0.1977 0.0595 0.0390 0.0021 0.0267 0.0149 0.0120 0.0092

0.0044 0.0012 0.0055 0.0022 0.0068 0.0027 0.0021 0.0024 0.0061 0.0020 0.0025

0.0026 0.0015 0.0003 0.0016 0.0025 0.0015 0.0011 0.0005 0.0005 0.0013 0.0009

0.0004 0.0006 0.0013 0.0005 0.0012 0.0009 0.0011 0.0011 0.0007 0.0004 0.0006

0.0001 0.0002 0.0003 0.0001 0.0002 0.0002 0.0002 0.0004 0.0002 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000

0.0001 0.0001

Channel 2 Sampled Time Impulse Response

Following is a FR4, 1.25 in, bottom layer stripline. The linecards are made

from Nelco 4000-13 routed in middle and bottom layers. Frequency response

data are provided by IEEE802.3ap Standard.

-0.0000 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -

0.0001 -0.0001 -0.0001 -0.0000 -0.0001 -0.0000 0.0000 0.0096 -0.0016 -0.0055

-0.0019 0.0000 0.0001 0.1057 0.4283 0.2312 0.0625 0.0346 0.0196 0.0147 0.0308

-0.0077 0.0100 -0.0081 0.0041 0.0019 0.0109 0.0021 0.0028 0.0025 -0.0034 -

0.0006 0.0100 0.0030 -0.0031 0.0018 0.0015 0.0020 -0.0019 -0.0023 0.0051

0.0006 0.0006 0.0018 -0.0002 0.0001 0.0013 0.0007 -0.0003 0.0007 0.0005 -

0.0010 0.0016 0.0003 -0.0001 0.0008 0.0005 -0.0004 0.0006 0.0008 -0.0006
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0.0009 -0.0005 0.0003 0.0000 0.0004 -0.0009 0.0005 0.0010 -0.0004 -0.0002

0.0009 0.0003 -0.0003 -0.0001 0.0008 -0.0008 0.0006 0.0002 -0.0006 0.0000

0.0007 -0.0002 -0.0002 0.0005 0.0001 -0.0000 0.0001 -0.0000 -0.0002 0.0003

0.0001 -0.0003 0.0002 0.0003 0.0002 -0.0002 -0.0000 0.0003 0.0001 -0.0001

-0.0001 0.0004 -0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 -0.0002 -0.0001

0.0002 -0.0005 -0.0002 0.0003 -0.0002 -0.0002 0.0003 0.0002 -0.0002 -0.0000

0.0001 -0.0000 0.0001 -0.0001 -0.0003 0.0001 0.0002 -0.0001 -0.0002 0.0001

0.0001 0.0000 -0.0000 -0.0000 -0.0000 0.0001 0.0001 -0.0002 -0.0001 0.0001

0.0002 0.0000 -0.0000 -0.0001 0.0001 0.0002 0.0000

Channel 3

Following is a “high ISI,” 20 in, FR4 backplane channel.

0.0006 0.0007 0.0008 0.0010 0.0012 0.0015 0.0020 0.0027 0.0041 0.0072

0.0171 0.0949 0.2539 0.1552 0.0793 0.0435 0.0356 0.0220 0.0126 0.0112 0.0099

0.0097 0.0076 0.0072 0.0065 0.0060 0.0066 0.0142 0.0032 -0.0025 0.0019 0.0010

0.0025 0.0075 0.0037 0.0001 0.0008 0.0017 0.0020 0.0017 0.0028 0.0048 -0.0000

-0.0024 0.0008 0.0030 0.0023 0.0015 0.0023 0.0016 0.0011 0.0014 0.0014 0.0013

0.0014 0.0014 0.0017 0.0031 0.0037 0.0007 -0.0007 -0.0004 -0.0003 0.0012

0.0021 0.0010 0.0002 0.0000 0.0003 0.0005 0.0005 0.0005 0.0009 0.0014 0.0017

0.0018 0.0017 0.0015 0.0013 0.0013 0.0014 0.0016 0.0016 0.0014 0.0012
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