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Abstract— Neuromorphic circuits and systems techniques have great
potential for exploiting novel nanotechnology devices, which suffer
from great parametric spread and high defect rate. In this paper we
explore some potential ways of building neural network systems for
sophisticated pattern recognition tasks using memristors. We will focus
on spiking signal coding because of its energy and information coding
efficiency, and concentrate on Convolutional Neural Networks because
of their good scaling behavior, both in terms of number of synapses and
temporal processing delay. We propose asynchronous architectures
that exploit memristive synapses with specially designed neurons that
allow for arbitrary scalability as well as STDP learning. We present
some behavioral simulation results for small neural arrays using
electrical circuit simulators, and system level spike processing results on
human detection using a custom made event based simulator.

I. Introduction

We are witnessing an explosion of nanotechnology devices in
recent years with applications not only in electronics, but also
combining other phenomena such as optics, chemical sensing,
bio-organic based sensing, etc. which arise naturally when
exploiting nano-scale dimensions. In this paper we focus mainly on
the potential for building large scale computational systems,
keeping the human brain as a candidate for imitation. A great
variety of two-, three-, four- or more terminal computational
nano-devices are being reported with potential use as resistors
(memristors), or traditional FETs, which can find immediate use in
traditional digital or mixed circuits and systems, but at a much
larger scale. However, new nano-scale devices suffer from great
parametric variations and defects, which makes necessary the use
of some system level conception to overcome such drawback.
Biological brains also use devices (such as neurons and synapses)
which have a limited life time, are slow and present great
parametric spread. However, brains circumvent such problems at
the system level, through clever architectures and adaptation
techniques resulting in robust and highly efficient intelligent
systems. Luckily, during the past decades the engineering
community has been developing circuits and systems taking
inspiration from biological brains, called “neuromorphic” circuits
and systems. It seems quite natural now to exploit such knowledge
for designing and building large scale neuromorphic systems using
nano scale devices, capable of circumventing their limitations
through neuro-inspired learning. In this paper we present some
viable solutions in this respect.

II. Devices

We will consider here the memristor, which is an adaptive
2-terminal resistive device. Our objective is to exploit such device
as the synaptic element of a neural perceptron. Neurons can be
designed using available CMOS VLSI technology, while synapses
(which are required in much larger quantities) can be fabricated as
nano-scale devices arranged on top of a silicon chip using some
post-CMOS fabrication technique, in a CMOL-like arrangement
[1]. The synaptic devices require two modes of operation: (1) a
computational mode in which they contribute to a neuron’s integral
with a characteristic weight, and (2) an adaptation mode in which
they change its characteristic weight when their terminal voltages
meet some requirement. In the first mode we will use the devices as
resistors, while in the second we want to change its conductance
when some of their terminal voltage difference exceeds a threshold
vy, For example, Fig. 1 shows symbols and characteristics learning
function of a voltage controlled memristor which can be defined by
the following equation [2]-[3]

bernabe@imse-cnm.csic.es

w =f(VMR) (D

If |vyg| <v,, its conductance does not change, otherwise it
changes accordlng to eq. (1), where w is a parameter controlling
conductance G € [G,,;,, G, ,.]. In the next Section we develop a
convenient memristor macro model for electric circuit simulation.

II1. Memristor Macro model

Let us consider the memristor model used by DiVentra et al
[4]-[6], which is a particular case of eq. (1), defined as

iyr = GOW)vyp
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The equation for f(v,,p, R) used by them is of the form
SOpps B) = Jvyp) H(R) 3)
where  f(v could be described by Fig. 1(b) or a

piece-wise- near approximation [4]-[6]. Nonlinear function H(R)
IS to guarantee that variable R remains restricted to the interval
ins The particular function they propose is
(7? ”é((R R,.)xO(R, .—R), where 0(-) is the step
function. However, mathematlcally, this expression has the
drawback that if Vanable R exceeds the limits [R, ., R, ] at
some instant, then R will stay equal to zero for ever and R W )1(1 not
change any more. Alternatively, one may use a smoothed version
of 0(-) which reduces this problem, but does not eliminate it
always. Note that the objective of multiplying function H(R) is to
restrict the values of R to the interval [R, +J. Such
objective can also be accomplished by substltutlng eq (3a) by

fOump B) = fpR) = S0 R) “4)

where nonlinear function f ,(R) is such that it is zero if
Rel[R,;»R,,] and grows very rapidly otherwise fully
absorbing any contribution from f{(v,,z), thus making R~0 ineq.
(2). Function f; (R) will thus have a shape as shown in Fig. 1(c).
We will now pr0V1de a macro model circuit for implementing eqs.
(2) and (4) in Spectre. A macro model of a device is a behavioral
model made of circuit elements (ideal or not) that describe the
same behavior. Note that some circuit simulators allow to define a
device mathematically using AHDL or Verilog-A. However, if it is
possible to describe it with a macro model, it will have some
advantages. (1) First, it uses already built-in components providing
faster simulations; (2) second, as it is made of circuit elements it
gives a richer intuitive insight to (analog) circuit designers on how
it works and performs, and how to improve it for specific goals; (3)
it is very intuitive to add parasitic components (resistors and
capacitors) to aid in the convergence of the simulator internal
algorithms; (4) and if one is careful in keeping the operating
voltages and currents of internal nodes to the levels the simulator
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Fig. 1: Memristor (a) symbol, (b) characteristic learning function, and
(c) saturating function for restricting R to the interval [R,,;,, R,,..].
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Fig. 3: Macro model based simulation of memristor. Left is memristors
current and right its instantaneous resistance.
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Fig. 4: biological action potential travelling through a nerve
expects from conventional circuits, simulations converge easier
and faster.A circuit macro model that implements eqgs. (1) and (4)
is shown in Fig. 2. It is composed of a controlled resistor whose
resistance R is controlled linearly by internal state voltage v

R(VR) = kRvR %)

Component NOTA is a nonlinear transconductor, also known as
nonlinear OTA (Operational Transconductance Amplifier) and it
provides an output current i (v yr). controlled by input differential
voltage v, . OTA current”i, 1s, in our case, a piece-wise linear
approximation of the function in Fig. 1(b). Nonlinear element
gsa(vg) 1s a nonlinear resistor with a piece-wise linear shape as
shown in Fig. l(c) but where R is replaced by v, [R R

mm’ ax]

by  [Vemin max , and f (R) by current 1
Consequently, the macro model clreuit in Fig. 2 is mathematlczﬁly
described by
Vair = ROR)yg
R(vp) = kpx(vp+vpo) 6)
ig(VMR) = CVR + isat(VR’ VRmin» VRmax)

Parameter kj scales between the voltage domain range of vg
(usually within a few volts, for proper simulator convergence) to
the resistance domain range of R which can be as high as hundreds
of Mega-ohms.Fig. 3 shows the simulation results of a memristor
stimulated with a 2V sinusoid of 1KHz and with R = 10MQ,
R, .. = 100MQ.

min

IV. Spiking Signals

Biological brains code and transmit information as spiking
signals. This is because spike coding is highly energy efficient as
well as information processing efficient. Fig. 4 shows a typical 2ms
“action potential” neural spike travelling about 1m from the brain
to a finger muscle in about 20-40ms. In space, such spike only
charges about 5cm of nerve, but not the whole line. The spike
sender only needs to provide the charge for this 5c¢m travelling
segment. This contrasts with present day electronic systems where
digital information (bits) are transmitted by fully charging and later
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Fig. 6: (a) STDP characterization in biological synapses. Vertical axis
is synaptic strength change and horizontal axis is time delay between
pre- and post-synaptic spikes. (b) Action potential waveform.

discharging wires. Furthermore, when using transmission lines for
high speed, there is usually a 50Q resistive component, besides the
capacitive load, which is permanently dissipating energy (even in
the absence of information transmission). Spike encoding is
therefore highly energy efficient and could be implemented using
soliton technology [7]. Regarding information coding, spikes allow
for very efficient schemes. Thorpe demonstrated in 1996 [8] that,
in the human brain, fast recognition of sophisticated figures (such
as animal detection in a photograph) is performed in a feed forward
manner in such a way that the neurons involved only generate one
spike. Thorpe later developed spike-processing convolutional
architectures capable of performing this type of recognition
efficiently in software [9].

V. Convolutional Neural Architectures

Convolutional neural architectures were originally proposed
by Fukushima [10], taking inspiration from neuroscience [11], and
later developed by LeCun [12] and used in many applications.
Some researchers are proposing powerful brain models based on
convolutional architectures [13]. Fig. 5 shows a typical
Convolutional Neural Network architecture. They usually contain a
reduced number of sequential layers (4-10), each of which
performs several 2D filtering operations in parallel. Early stages
extract simple features (such as edge orientation and scale), which
are progressively combined into more complex shapes and figures
at later stages. Early stages usually operate with small but dense
kernels, while later stages use longer range but sparser ones [13].
To increase the knowledge (dictionary of shapes and figures) of the
system one simply has to add more 2D filters in later layers.
Example Convolutional systems for face and character recognition
applications may have several tens to hundreds filters per layer.
What is interesting about Convolutional Neural Networks,
compared to other neural networks, is their graceful scaling
capability. To increase knowledge one simply has to increase the
number of modules in a layer. Number of neurons (pixels) scales
linearly with the number of modules. Each module performs
several filters. There is a fixed number of synapses per filter (the
convolutional kernel weights). Consequently, number of synapses
also scales linearly with the number of modules. On the other hand,
the latency of the computing structure (if implemented as parallel
hardware) is determined mainly by the number of sequential layers,
which is a reduced number and does not change for a given
application. In other neural network architectures the number of
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Fig. 7: (a-b) Crossbar arrangements for feed forward memristive
synapse STDP neural network. (¢) Conceptual block diagram of
neuron.

synapses scales quadratically with the number of neurons.
Consequently, Convolutional Neural Networks seem very
appealing for configurable, modular and scalable (spiking or
non-spiking) hardware implementations.

VI. Spike Time Dependent Plasticity

Spike-time-dependent-plasticity (STDP) is a neural learning
mechanism originally postulated [14] in the context of artificial
machine learning algorithms (or computational neuroscience)
exploiting spike-based computations (as in brains). Astonishingly,
experimental evidences of biological STDP have later been
reported by several neuroscience groups worldwide [15]. In STDP
the change in synaptic weight Aw is expressed as a function § of
the time difference between the post-synaptic spike at ¢, and the
pre-synaptic spike at 7,,... Specifically, Aw = §(AT), with AT = £,
-ty - The shape of the STDP function & can be interpolated from
experimental data from Bi and Poo [15] as shown in Fig. 6(a). For
positive AT there will be a potentiation of synaptic weight Aw > 0,
which will be stronger as |A7] reduces. For negative AT there will
be a depression of synaptic weight Aw < 0, which will be stronger
as |AT] reduces. We recently demonstrated [16]-[17] that if a
memristor (as defined in eq. (1)) is stimulated on its two terminals
by two asynchronous spiking signals of the shape shown in Fig.
6(b) separated by a time A7, and attenuating the post-synaptic one
by o,0,<1, then the weight update function shown in Fig. 6(a) is
mathematically obtained, which is identical to the one obtained by
Bi and Poo from physiological experiments. This opens the
possibility that in biological synapses there might be a memristive
type of mechanism responsible for biological STDP [16]. Also, it
turns out that the action potential shape strongly influences the
resulting STDP function [17].

back through the input collecting line, (c) and to avoid any further
input signal integration during spike production. An attenuated
version of the spike voltage is sent forward to the next layer
synapses. This architecture avoids cross-coupling of spikes
between rows and columns. Using this arrangement with the
memristor macro model of Fig. 2 we performed intensive
behavioral simulations in Cadence-Spectre to test the concept on
the 4x4 feed forward array shown in Fig. 8. The results are shown
in Fig. 9. Only the first 2 column synapses are stimulated with
200ms period spikes (of 45ms duration) with a 25ms relative delay
between the two columns. As can be seen only synapses at the first
two columns change their resistance, while those on the other two
columns do not, confirming the correct operation of STDP, without
any crosstalk between columns nor rows. This demonstrates that
this architecture can be scaled to arbitrary size, at least ideally.
Practical considerations that could limit maximum size are given
mainly by fan-out of neurons and interconnects delays.

VIII. People Recognition

Using the above concepts we have simulated behaviorally a
spiking convolutional neural network (see Fig. 10), using a custom
made simulator [19] for asynchronous event-based sensing and
processing systems. The input visual flow was captured with a
physical temporal contrast (motion) AER retina [20] when
observing people walking. Visual pixel array was down sampled to
32x32. The spiking convolutional network has 7 layers. The first
layer is a Gabor filter bank, second layer is subsampling, third
layer is a trainable 5x5 kernels filter bank, fourth layer is
subsampling, fifth layer is again a trainable 5x5 kernel filter bank,
and sixth and seventh layers are fully connected trainable
perceptrons. The system was trained off-line, in its equivalent
non-spiking representation, through back propagation learning to
categorize inputs as vertical humans, up side down humans,
horizontal humans, or other objects. After training, learnt
parameters were mapped to the spiking representation and the
system was tested with new retina recordings, showing a correct
recognition rate of above 86%.
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Fig. 9: Evolution of weights (resistances) of a 4x4 feed forward
memristive perceptron network. Bottom trace shows the weights of
memristors in the third/fourth column. The other traces show the
evolution of weights in the two left most columns. Traces are grouped
pair-wise with synapses in the same row (and with identical initial
condition).
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Fig. 10: Structure of spiking Convolutional Neural Network trained
for recognizing people from visual data captured from an AER motion
retina

IX. Conclusions and Future Outlook

We have motivated the combination of spiking neuromorphic
circuit and system design with nano technology adaptive devices.
We have illustrated how to implement spiking convolutional neural
networks using memristors, have developed a convenient
memristor macro model, and have shown simulation results of
circuit structures performing correct STDP learning. We also have
shown behavioral system level event-based simulations of an
example application for people detection using real sensory data
from an AER motion retina. Present day memristors suffer from
some shortcomings that difficult the physical realization of
operative STDP structures: (a) they tend to go quickly to their limit

range values G G making it difficult to set intermediate

min > = max

range values, and (b) in the range below threshold (|v Zf-‘ <v,)
the resistance still is weakly updated. Adaptive nano-F% s show
better behavior in this respect, although they are less compact.
However, it is possible to conceive memristive circuits with the
same behavior shown before, but using adaptive FETs as synapses
[21]-[23]. Future work will target full STDP learning in spiking
hardware within a complex learning system similar to those like in
Fig. 10 [25].
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