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Abstract— Calibration or model parameter estimation from
measured data is an ubiquitous problem in engineering. In
systems biology this problem turns out to be particularly chal-
lenging due to very short data-records, low signal-to-noise ratio
of data acquisition, large intrinsic process noise and limited
measurement access to only a few, of sometimes several hundreds,
state variables. We review state-of-the-art model calibration
techniques and also discuss their relation to the general reverse-
engineering problem in systems biology. For biomolecular circuits
involving low-copy-number molecules we adopt a Markov process
setup and discuss a calibration approach based on suitable
metrics between probability measures and propose the metrics
computation for the multivariate case. In particular, we use
Kantorovich’s distance and devise an algorithm, for the case
when FACS (fluorescence-activated cell sorting) measurements
are given. We discuss a case study involving FACS data for the
high-osmolarity glycerol (HOG) pathway in budding yeast.

I. INTRODUCTION

New experimental measurement techniques allow us to
sneak a peek on the biomolecular processes within a single
cell. Time-lapse fluorescence microscopy provides relative
protein abundances over time and can even access the spatial
arrangement of those inside the cell [1]. Flow cytometry
and fluorescence-activated cell sorting (FACS) [2] outputs
adequate statistics on the distribution of protein abundances of
a large population of cells. Below the sensitivity of fluorescent-
proteins-based techniques, single molecules approaches, such
as mRNA detection using the MS2 bacteriophage, or fluores-
cence in vivo Hybridization (FIVH) have been developed to
actually count single mRNA copies within a cell [3].

The cell-to-cell variability observed with such single-cell
recordings is partially attributed to molecular noise, i.e., the
intrinsic stochasticity of a chemical kinetics. Another part
comes from the extrinsic part [4] that is due to fluctuations
in the intracellular environment of the cell, i.e. concentration
variation, spatial position of regulatory molecules and cell
volume. However, due to noise amplification and bistability
in many biomolecular circuits, molecular noise can give rise
to such extrinsic noise.

The availability of such measurements exposing the in-
herent stochasticity of the molecular mechanisms calls for a
probabilistic framework to be able to give them a suitable
mathematical model. Starting with the work of Delbriick a
Markov process theory of chemical kinetics [5], well founded
on thermodynamic principles [6] has been developed. Recent

years have witnessed the limitation of this approach to capture
in vivo dynamics of intracellular processes. In particular, the
assumption of well-stirredness and Brownian-type diffusion
is shown to be inappropriate in some scenarios and spatial
simulation algorithms that also account for macromolecular
crowding [7] were proposed [8].

Recently, effort has been made to account for and exploit
the significant stochasticity of single-cell recordings in model
calibration. Markov-chain Monte Carlo methods have been
deployed to sample from the complicated posterior distribution
in Bayesian estimation schemes in the case of sampled data
[9]. Reinker et al. fitted a hidden Markov model to noisy
data of single-mRNA measurement, whereas Golightly et al.
proposed to infer the parameters of the approximate chemical
Langevin equation to cope with the state-space-explosion
of the underlying exact probabilistic transition system [10].
Ruttor et al. [11] applied approximate variational inference
on the transition system to keep the computational complexity
manageable. Approximate Bayesian computation is used by
Toni et al. [12] to infer kinetic rates and perform model
selection. The first use of probability metrics for systems
biology is reported in [13] and it serves as the basis for the
approach taken here. To this end, it is important to stress
that calibration is different from, and less ill-posed, than
the general inverse problem of reverse-engineering regulatory
networks, where network topology and kinetic parameters are
inferred simultaneously [14].

The remaining part of the paper is organized as follows. In
Section II we introduce the standard mathematical framework
to describe stochastic chemical kinetics. Section III lays out
the foundation for Section IV, where the considered calibration
approach and the particular problem statement is discussed
in detail. This section contains two case studies — a simple
synthetic one and one that involves FACS measurements.
Section V draws conclusions and indicates directions for
further research.

II. STOCHASTIC CHEMICAL KINETICS

We call a reaction system a tuple S = (A, mg, R, c) with
A = {A,Ay,..., Ay} the set of chemical species, R =
{R1,Ra,..., Ry} the set of reactions, my : A — Ny the
initial species’ multiplicity and c € Rf the vector of kinetic
rate constants. A reaction [?; among species is thus defined
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where here the symbol “+” indicates chemical composition
of species and not algebraic addition. The constant cj is
determined by thermodynamic quantities, such as the dif-
ference in free energy. We denote S;, € Ny and Py, €
Ny as the stoichiometric coefficients for the substrates (left-
hand-side) and the products (right-hand-side) of reaction Ry,
respectively. Moreover, we denote the matrix N € ZN*M
as the stoichiometric matrix of S, the elements of which are
defined as N;;, = P — S;i. Thus for a given reaction Ry
the k-th column of IN corresponds to the net consumption or
production of the involved molecular species.

The macroscopic state of a reaction system S is a function
X : Rg+— X C N)Y with elements X;(t) = m;(A;), t € Ry,
0 < i < N and multiplicity m; : A x Ry — Np. We call
X the macroscopic state because it may serve as a summary
of the microscopic states, involving for instance position and
velocity of every single species in a reaction volume V.

A reaction system S is considered well-stirred if the prob-
ability of finding S in state x = (x1,...,2x5)7 at any
time ¢, P(X(t) = x) is expressible solely as a function of
x at previous time points ¢’ < ¢. Examples of not well-
stirred systems, where the dynamics cannot be expressed self-
consistently by the macroscopic state are diffusion limited
reaction systems [8].

We call a well-stirred S Markovian if its macroscopic
state X evolves according to a first-order Markov process,
that is if Pr[X(¢,) = X, | X(tn-1) = Xn-1,...,X(tg) =
xg] = Pr[X(tn) = X | X(tn-1) = Xn—1]. Simple examples
for well-stirred reaction system that exhibit non-Markovian
dynamics are systems with delays [15].

Consider a well-stirred Markovian S. The hazard aj(x) of
reaction Ry, is the probability per time that Ry, fires, i.e.

Pr[X(t + dt) = x + Ney | X(t) = x] = ag(x)dt

where e;, is the k-th basis vector of a M -dimensional vector
space. S is said to obey mass-action if

N
_ zj
ay(x) = ckjljl (Sj). (1)

Throughout this work, we consider well-stirred, Markovian
reaction systems with mass-action kinetics.

ITI. METRICS ON STOCHASTIC PROCESSES

Let € be a metric space with metric p : Q2x{ +— Ry and F
be the o-algebra of Borel subsets of (). Take two probability
measures P and ) on (€2, F) and respective random variables
Z; + Q — E, i € {1,2}, then the Kantorovich distance x
between them is defined as

K(P,Q) =

inf
PeP(Z:1,Z2)
where P(Z, Z3) denotes the set of all joint distributions P :
F x F + [0,1] having marginals P and @) and Ep computes
the expectation with respect to one such joint density P € P.

EP [p(Zl7Z2)] ) (2)

For p being a L, metric, the Kantorovich metric is some-
times referred to as the minimal L,, metric, 1,,. The following
dual representation of 1; is important for its application [16].

Theorem 1 (Kantorovich-Rubinstein [16]): The  minimal
metric 11 (P, Q) between two probability measures P and @
is identical to the Lipschitz metric pr,, the definition of which
is

pr(P,Q) = sup
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with w € Q and f : Q — R. The supremum is taken over all
functions f that have a Lipschitz semi-norm below one

|f(w1) —f(wz)\.
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For the case of = = R! and p(Z, Z3) = | Z1— Z5| the minimal
metric thus becomes
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where we made use of the cumulative distribution function
F} and F; for the random variables Z; and Zs, respectively.
This original result for the one-dimensional case is shown to
be extensible for any L, norm [16] not just p = 1. With
the supremum norm p — oo, we recover the Kolmogorov-
Smirnov distance and for p = 2, the Cramer-von-Mises
distance as special cases.

IV. MODEL CALIBRATION

The dual representation of x for the one-dimensional case
(3) is applied to calibration and model reduction in [13] by
defining one-dimensional “reporter variables” of the under-
lying multivariate process. Unfortunately, explicit expression
for the dual representation of « as for = = R! or Z = Z! in
(3) in the multivariate case does not exist, with the exception
of the Gaussian distribution [17]. For multivariate discrete
processes = = Z~, we propose however to resort to the
primal representation (2) of x that defines a finite linear
program and can thus be computed efficiently. With this, one
can exploit the dependencies between species abundances as
experimentally provided by, for instance, multi-channel time-
lapse fluorescence microscopy.

In the following, however, we focus on the important
practical situation of FACS measurement, where the intracel-
lular fluorescence intensity of tagged proteins of one type is
recorded for a large population (=~ 10%) of cells at one time
instant ¢¢. In particular, we address the question whether model
parameters can uniquely be determined by one such large-cell-
population snapshot.

A. Case study — bistable Lisman switch

To illustrate our approach we consider the simple bi-stable
reaction system due to Lisman [18]. The system is proposed
as a generic mechanism for long-term modification of synaptic
efficiency and memory storage within neuronal cells. The
original [18] reaction system S = (A, mg, R, c) contains five



species A = {K1, K7, P,K; : K}, P : K{} and the following
set R of six reactions.

K+ K = K, : K 5 2K}
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Subsequently, we write S(c) for the model and make explicit
its parameter-dependence. The data-generating system is as-
sumed to be system S(¢) with some constant ¢. For small
copy numbers mg(A), VA € A, the chemical master equation

(5]

Op(x,c,t) M
# = Zaj(x — Nej, ¢j)p(x — Nej, ¢, 1)
j=1

- )
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for system S(c) can be solved numerically, where we intro-
duced the probability density p : X x RY x Rg ~— [0, 1]. For
this case study we assume that we only have measurement
access to one species of S(¢), chosen to be Kj. Assigning
a linear index to any element of the state space by bijection

n:X— {1,2,...,|X|} we can write (5) in a standard state-
space form
p(c,t) = Q' (c)p(c,?) (©)

W(Ca t) = Mp(C, t) with p(C, 0) = Po;, (7N

where in (6) p;(c,t) = p(X,c,t), j = n(x) and where
Q(c) is the infinitesimal generator of the Markov process
[19]. In (7), we also introduced an observation equation where
M is the marginalization matrix for p(c,t) and m(c,t) is
the marginal probability over the copy numbers of K. The
observable distribution of the data-generating system is thus
7 (to) = w(€,to). The Kantorovich distance (3) then reads

r(c) = k(7 (to), w(c, to)) = [[F [ (to) — m(c,to)] [[5, (8)

where matrix F computes the cumulative distributions from
their respective densities. Calibration of S(c) to S(¢) corre-

sponds to the problem
minx(c) subject to: ¢, > 0VE € {1,2,...,M}, (9)

that is solved for p = 2 using an iterative second-order scheme
by supplying gradient and Hessian of x with respect to c

ok(c) .. T T g OP(C; t0)
T = -2 [Tr(to) — 7T(C, to)] F FMiac .
O?k(c) . T o7 g 0 P(C, to)
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T
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where in the former we applied the notational convention that
the derivative with respect to a column vector is a row vector.
The involved first and second-order sensitivities of p(c, )

are best obtained from solving the corresponding variational
equations

d [ 9p(c,t) op(c,t)
dt< Do >Q(c)( Do >+
d [(9%p(c,t) B 9’p(c,t)
dt ( Oc0c¢; ) = Qle) ( OciOcy )
900 (3ple)) , 280 (Spfen))
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jointly with (6) and (7) for ¢ € [0, o). The initial conditions
are zero matrices of appropriate dimension for both cases.
Alternatively to the variational equations, the convolutional
representation for the two sensitivities, involving the matrix
exponential of Q(c), can be computed. The explicit expres-
sions of gradient and Hessian of (8), together with an initial
parameter set, fully specifies a Newton algorithm to solve (9)
in the general case.

Moreover, one can use the Hessian to determine local
identifiability. For the case study, we randomly sampled many
¢ for the data-generating S(¢) and computed the Hessian at
the optimal point ¢ and in its vicinity. The Hessian turned
out to be singular. We can thus conclude that S(c) can be

calibrated to the data of S(¢) but the parameters cannot be
uniquely determined.

9Q(c)
ack

p(c,t)

B. Case study — Osmo-Stress Response in Yeast

The HOG pathway in yeast saccharomyces cerevisiae is
activated by osmo-sensors at the cell membrane and results in
the activation of the Hoglp MAP (mitogen activated protein)
kinase, which drives the adaptation of the cell to its new
environment and causes an up-regulation of roughly 300
genes [20]. To study this process at the single cell level, a
fluorescence expression reporter under the control of a stress
responsive promoter (pSTL1) was integrated in the genome of
the yeast and the fluorescence of the cell was quantified by
flow cytometry. If the cells are challenged by high osmotic
stress (0.4M NaCl), a twenty fold increase in fluorescence
signal is measured compared to the basal auto-fluorescence of
the cells. Interestingly, at intermediate NaCl concentration (0.1
M) we observe a bimodal response in the expression response
with only half of the cells expressing the fluorescent reporter
(P in Fig. 1) [21]. We show that a chromatin remodeling event
driven by the RSC complex [22] can be used to model this
behavior. The transcriptional model is depicted in Fig. 1.

The complete model involves 13 mass-action reactions,
including a simple activation model for Hoglp through NaCl.
Furthermore, we assume a linear scaling relation y = ax
between the fluorescence signal y and the modeled reporter
abundance x = my, (P). All 13 kinetic rates with the scaling
constant « are calibrated based on (8). For the model with
realistic abundance levels, (5) cannot be solved numerically
anymore and we resort to Monte Carlo stochastic simulation
[6], [23] of the system. However, with an empirical estimate
for m(c,tp), gradient-type algorithms solving (9) show bad
convergence due to the variance in the estimate. Supported
by theoretical considerations [24] and FACS data analysis
[2], we deploy a log-normal mixture model as a kernel



density estimator to reduce the variance. In the case of Monte
Carlo simulations gradient and Hessian cannot be computed
analytically, and we resort to a gradient-type finite-differencing
scheme. Every iteration comprises 10* stochastic simulations,
estimation of the mixture model parameters and computation
of (8) between the mixtures. The results are shown in Fig. 2.
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Fig. 1. Proposed minimal gene regulation model for the response to osmo-
stress that explains bimodality in the expression profile (for P); efficient
transcription (with rate c2) only takes place if the chromatin remodeling
complex (RSC) is recruited by active Hogl to the STL1 promoter site; the
general transcription factors and the RNA polymerase II are not modeled as
they appear to be unregulated with respect to active Hogl; curly arrows denote
protein degradation.
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Fig. 2. Histogram and log-normal fit of the bimodal expression profile

for experimental fluorescence intensity data y (dotted) and corresponding
calibrated model intensity using § = &~z (solid), with estimated &; local
identifiability cannot be proved due to the lack of the Hessian expression.

V. CONCLUSIONS

We review the state-of-the-art in calibrating stochastic mod-
els of chemical kinetics. We discuss in detail the mathematical
framework of probability metrics to compare two stochastic
processes. Focus is put on the particular problem of calibrating
a model to FACS measurements. For the example of the
bistable Lisman switch, we show by spectral analysis of the
Hessian that such data is insufficient to uniquely determine
the parameters of the model. In a second example we discuss
a novel molecular mechanism to explain bimodality, observed
in the expression profile of osmo-stress genes in yeast. We
calibrate a stochastic model to FACS measurements of this
system. Future work includes the development of a general
framework to determine how many FACS snapshots are nec-
essary to guarantee identifiability of a given model.
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