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Abstract— Meeting temperature constraints and reducing the
hot-spots are critical for achieving reliable and efficient operation
of complex multi-core systems. In this paper we aim at achieving
an online smooth thermal control action that minimizes the
performance loss as well as the computational and hardware
overhead of embedding a thermal management system inside
the MPSoC. The optimization problem considers the thermal
profile of the system, its evolution over time and current time-
varying workload requirements. We formulate this problem as
a discrete-time control problem using model predictive control.
The solution is computed off-line and partially on-line using an
explicit approximate algorithm. This proposed method, compared
with the optimum approach provides a significant reduction in
hardware requirements and computational cost at the expense
of a small loss in accuracy. We perform experiments on a model
of the 8-core Niagara-1 multicore architecture using benchmarks
ranging from web-accessing to playing multimedia. Results show
that the proposed method provides comparable performance(loss
up to 2.7%) versus the optimum solution with a reduction up to
72.5× in the the computational complexity.

I. INTRODUCTION

With the advance of technology, the number of cores
integrated on a chip is increasing. Today, several multicore
architectures are already commercially available, such as Sun’s
Niagara architecture [1]. Power and thermal management are
critical challenges for high-end multicore systems [3]. Temper-
ature gradients and hot-spots affect system performance and
lead to reduced chip lifetimes [2].

In recent years, thermal management techniques have re-
ceived a lot of attention. Many state-of-the-art thermal control
policies manage power consumption via dynamic frequency
and voltage scaling (DVFS) [6]- [10]. DVFS can target power
density reduction, which has the effect of reducing overall tem-
perature [6]. Then, thermal control policies avoid violations of
temperature bounds by transitioning processors in low-power
modes, taking a performance hit to cool down.

Not only high temperature, but also thermal cycles raise the
failure rate of the system [11]. In addition, too fast power-
mode transitions due to DVFS waste power [13]. Hence,
smooth thermal control, which eliminates very fast power-
mode transitions and large thermal cycles is highly desirable.

In this work, as in our previous work [15], we propose an
online smooth thermal control action to keep the maximum
MPSoC temperature under a specific bound. The policy min-
imizes also the performance loss and the hardware overhead
of the proposed thermal management system. The problem

Fig. 1. Diagram of proposed approximate-explicit-MPC-based thermal
management policy

is modelled using a control-theoretic approach based on a
novel approximate explicit model predictive control (MPC)
[9]. Here, constraints on the maximum temperature of the
MPSoC and on the required workload are enforced in the
optimization process. Then, the optimal control problem is
formulated over an interval of L time steps, which starts at
current time t. For this reason, our approach is predictive [9].

In our previous work [15], the policy is computed on-line
by multiplying the vector containing current thermal profile
information and workload requirements by precomputed co-
efficients. The main problem with this approach is that the
number of coefficients to store is usually large for a complex
MPSoC system. As a result, this method can be implemented
only in MPSoC described by simplified thermal models using
a small number of states and input/output variables. In addition
to that the policy had to be formulated over a limited interval
of few time steps in the future to keep the implementation of
the policy feasible.

In this paper we present a new explicit approximation
method, that reduces computational complexity and enables
its online implementation. As a result, this approach can be
extended to complex MPSoC models without the need of a
numerical embedded solver. We perform experiments on a
commercial multicore architecture using benchmarks ranging
from web-accessing to playing multimedia. Our results, com-
pared with [15] show a reduction up to 45× in the number of
coefficients and a reduction up to 72.5× in the computational
complexity. The performance loss is negligible compared with
the optimum controller. The tracking error has an average loss
up to 2.7%. This metric represents the amount of undone work
normalized to the total workload request.
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II. PREVIOUS WORK

Many researchers have recently focused on power manage-
ment and thermal control for multicore systems and Multi-
processor Systems-on-Chip (MPSoCs). Processor power opti-
mization using DVFS have been proposed in several works
[4]. Jung et al. [13] try to minimize very fast changes in
power mode transitions by solving the frequency assignment
problem from a frequency prediction perspective [6]. These
techniques reduce power density and overall temperature, but
not necessarily thermal gradients and hot-spots.

Murali et al. [10] use convex optimization to solve the
DVFS assignment problem considering power and hotspot
minimization. The convex optimizer computes processor fre-
quencies which minimize the gap between required and pro-
vided performance, subject to the operating temperature con-
straint. The main drawback is that it does not adapt smoothly
to changes in performance requirements, leading to very fast
changes in processor DVFS assignments.

In our previous approach [15], model predictive control is
used as a methodology to solve the frequency assignment
problem in an MPSoC. Nevertheless the computational cost
of this approach is high. As a result the MPSoC model had to
be simplified to make the system feasible from a computational
perspective.

III. PROPOSED POLICY

A. System model

The abstraction of the system as a block diagram is shown
in Figure 1. The regulator currently monitors the MPSoC state
consisting of temperature values and working frequencies. The
temperature state at time t is defined as a vector Tt ε �2n,
where (Tt)i is the temperature of cell i at time t. The thermal
model consists of two layers, each one composed by n cells.
For this reason the total number of cells representing the
MPSoC thermal model is 2n. The frequency state at time t is
defined as a vector ft ε �c, where (ft)i is the frequency value
of input i at time t and c is the number of inputs. Working
frequencies are controlled by the regulator, and are known
while temperatures are monitored by on-die thermal sensors.
Temperature measurements at time t are defined as a vector
T̃t ε �s, where (T̃t)i is the temperature measurement coming
from sensor i at time t. The number of thermal sensors inside
the MPSoC is denoted by s. Thus, the current state of the
system Tt at time t is generated from data derived from real
thermal sensor measurements T̃ on the real MPSoC.

The regulator monitors the workload generated from higher-
level software layers (e.g., operating system or OS). At time
t, it is defined as a vector wt ε �c. The regulator provides a
frequency assignment that minimizes the undone work. This
is defined as the difference between the offered and required
workload. This quantity has a minimum value equal to zero
when the controller sets processor working frequencies exactly
matching the requests coming from the OS.

Fig. 2. Floorplan used of the Niagara-1 multicore case study

B. MPSoC thermal model

The thermal model is derived considering the heat conduc-
tances and capacitances of the cells as computed and validated
in [6] and [5]. The differential equations modelling the heat
flow are given by solving this network. The thermal model is
slightly nonlinear since coefficients are temperature-dependent
(relative error in the order of 0.16%) [5]. To represent the
thermal model using a linear, time invariant discrete-time
system, the solution of the differential equations modelling
the heat flow inside the MPSoC has been linearized. The way
the model is described is expensive in terms of computational
requirements for high accuracy MPSoC models. The reason is
because the model has a number of states equal to the number
of thermal cells inside the MPSoC floorplan. This might be
large for high-complexity MPSoC.

In this approach, we use a simplifying model using a smaller
number of states. To reduce the number of the states, we
performed a model reduction using a Gramian-based balancing
of state-space realizations [14]. After that, we reduced the
order of the state-space model by eliminating the states with
corresponding small Hankel singular values. The full MPSoC
model is now described by the following system of equations:

X̃t+1 = ÃX̃t + B̃pt (1)

T̃t = C̃X̃t (2)

where, at time t, l is the number of states of the new reduced
order model, matrix Ã ε �l×l and matrix B̃ ε �l×c. Equation
1 describes the state update for the reduced order model of the
MPSoC. Here the states do not represent directly temperature
values inside each cell.

The relation between the power dissipation pt ε �c and and
the frequency of operation ft is expressed by Equation 3.

fα
t = pt ∀ t (3)

where the constant α is chosen depending on the technology
and usually it varies from 1 to 2. If α = 1, we have a linear
dependence(i.e., freq. scaling) while if 1 < α ≤ 2 we obtain
a quadratic or sub-quadratic dependence(i.e., DVFS) [10].

Matrix C̃ ε �s×l. Equation 2 relates the value of the states
with temperature measurements in s specific locations inside
the MPSoC. In cases where the temperature of the overall
MPSoC floorplan has to be controlled, s is set equal to 2n.
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C. Approximation Method

The proposed method aims at minimizing a cost function
for a linear dynamic system under constraints. The solution
of the optimization problem is solved off-line in a way that
makes explicit the dependence of the solution of the frequency
assignment problem ft+1 on input parameters ft and T̃t.
The resulting explicit controller is piecewise polynomial. In
other words, the state space can be divided by in a set of
regions, bounded by linear inequalities (i.e., a polytope), and
in each region a different linear controller can be specified
and computed off-line [9]. Then, the controller selection can
be efficiently performed on-line by simply checking region
boundaries. The optimization problem is formalized as:

J(w, X̃) := min
f0,...,fL−1

L−1∑

t=0

t∑

i=1

(wi − fi)

s.t.
t∑

i=1

wi ≤
t∑

i=1

fi (4a)

X̃t+1 = ÃX̃t + B̃pt

pt ≥ fα
t

C̃X̃t ≤ Tmax (4b)

fmin ≤ ft ≤ fmax (4c)

X̃0 = X̃ (4d)

The problem minimizes the undone work Ut at time t, Ut =
wt − ft, subject to thermal constraints on each cell (4b), core
frequency bounds (4c) and to the causality limitation (4a),
which states that workload cannot be completed before it is
issued. The convex problem is solved by using the approx-
imation method proposed in [17]. This method produces an
approximate controller of any desired complexity and provides
a direct trade-off between the level of approximation and the
storage requirements.

The proposed method begins by computing an approximate
convex Piece-Wise Affine (PWA) lower bound of the optimal
cost function of (4). Since the approach proceeds in an
incremental greedy-optimal fashion, it is possible to stop the
process when any desired level of complexity, or approxima-
tion accuracy, is reached. The control law is then derived
from this lower bound by sampling (4) at the vertices of
the bounding function and interpolating using the barycentric
technique proposed in [18]. The result is a nonlinear and
smooth piecewise polynomial control law. In particular, the
algorithm is divided into two main phases.

The first phase of the algorithm iterates two steps. In the
first step, we compute the level of approximation and a point
that obtains this level. In the second step, the approximation is
updated such that the error is maximally reduced around this
point. These two steps are iterated until the desired accuracy is
achieved. It can be shown that any desired approximation error
can be achieved in finite time for any convex function. Within
I iterations, the above procedure produces a lower PWA bound
fI of the optimal value function J consisting of I inequalities
and an approximation error ε.
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Fig. 3. Run-time simulation of the proposed method

We now apply the second phase of the algorithm, where we
compute the optimal solution at the vertices of fI . We then
define a polynomial for each region Ri by interpolation of the
optimal control law at the vertices of the region. The result is
a smooth, piecewise polynomial control law.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

As case study, we use the 8-core Niagara-1 (UltraSparc T1)
chip from Sun Microsystems [1]. The Niagara-1 floorplan is
shown in Figure 2. In this model the number of cores c =
8, the number of cells per each layer n = 30, the number
of states in the reduced model l = 3. We used a value of
α = 2 [10]. As software benchmarks, we have used mixes
of tasks ranging from web-accessing to playing multimedia
[7]. In our experiments, our MPC-based thermal management
policy is applied every 8 ms, while the simulation step for the
discrete time integration of the thermal model is 200μs. The
MPC policy tracks workload requirements, minimizing power
consumption while respecting a maximum temperature limit
of 370◦K. The prediction horizon L = 4.

B. Comparative Simulations

Figure 3 shows the run-time simulation of the proposed
method. The maximum MPSoC temperature never exceed the
threshold set to 370◦K. The policy splits the average required
amount of workload per each core in an unbalanced way.
A frequency higher than the average request is assigned to
the outer cores. These cores are indeed surrounded by colder
regions and so they can dissipate the power in a better way
compared with the inner cores. At 3.5s, the policy is not
able to satisfy the average workload requirement since the
MPSoC maximum temperature is exceeding the threshold. The
frequencies of both the inner and the outer cores are decreased
in a smooth way avoiding very fast changes as in [10].
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Controller Number Number Comp. complexity Storage Space Perform. Perform. Time Time
of of (#operations) (#coefficients) (TCKerr) (MUw) design run

regions vertices search control law total search control law total [s] [ms]
A-100 1 66 0 858 858 0 366 366 67.34% 83.57% 40.13 4.29
A-200 14 136 30 1025 1055 204 915 119 10.92% 28.08% 46.92 5.27
A-300 32 233 50 1184 1234 1560 1770 3330 7.00% 23.11% 50.75 6.17
A-400 51 328 60 1286 1346 3186 2778 5964 4.56% 19.59% 55.90 6.73
A-500 72 431 60 1335 1395 4986 3771 8757 4.54% 19.59% 63.61 6.97
A-600 87 528 65 1354 1419 7212 4683 11859 4.51% 19.46% 71.46 7.09

Optimal 3770 89552 16 89568 89552 60320 149872 4.29% 19.04% 196.32 447.84

TABLE I

COMPARATIVE TABLE OF THE PROPOSED METHOD VS THE OPTIMUM STATE OF THE ART APPROACH [15]
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Fig. 4. Performance versus computational complexity trade-off comparison

In Table I approximation complexities are ranging from 100
to 600 vertices. The penultimate column reports the time in
seconds that a MacBook Pro (2.8GHz, Core 2 Duo, 4GB
ram) took to design the controllers. By comparing with the
optimal controller, we get a reduction in the computation time
ranging from 2.7× to 4.9×. The last column reports the time
needed to run-time execute the policy assuming a processor
able to execute 200K FLOPs. A reduction versus the optimum
approach ranging from 63.1× to 104.4× can be achieved.

As a performance metric, we use the normalized maximum
undone work MUw and the tracking error TCKerr. The first
one represents the maximum amount of undone work (Ut =
wt − ft) normalized to its total workload request, the second
one the average value of it. If we consider finer controllers
with more than 200 vertices, they provide a performance loss
in terms of TCKerr that is only up to 2.7% lower than
the optimal case. However, for these controllers the number
of regions and vertices got greatly reduced. Results show a
reduction up to 45× in the number of coefficients and the
computational complexity is reduced as well by a factor of
72.5×. The predictive behavior of the controller makes the
undone work pretty uniform during the run-time execution
of the policy. This is shown by the ratio between MUw and
TCKerr that ranges from 4.4 to 3.3. In Figure 4, under a
certain number of vertices, the approximation error of the
controller becomes significant and the tracking error increases
exponentially. The first two approximations show a tracking
error that is respectively 63% and 6.6% lower than the optimal
case. However, for controllers with more than 200 vertices,
we get points in the design space having almost optimal

performance but with a much lower implementation overhead.

V. CONCLUSION

In this paper we propose an online smooth thermal control
action, that minimizes the performance loss as well as the
computational and hardware overhead. We formulate the prob-
lem as a discrete-time control problem using an approximate
explicit model predictive control. Compared with the optimum
solution [15], our results show a reduction up to 45× in the
number of coefficients and the computational complexity is
reduced as well by a factor of 72.5×. The corresponding
tracking error has an average loss up to 2.7%.
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