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Abstract—This paper discusses some new suggestions for designing 
hardware vision systems that take inspiration from spike-based 
biological image processing. The key idea is to modify already 
existing Address Event Representation (AER) designs so that 
there is a periodic reset signal that can be generated every time 
some predefined proportion of "neurons" has emitted a spike. 
Each "neuron" only emits at most one spike per processing cycle, 
but the most strongly activated neurons fire first, ensuring that 
information about the image is transmitted with maximum 
efficiency. Simulations demonstrate that this sort of design can 
allow image reconstruction under conditions where only a few 
percent of the units have emitted a spike. This means that the reset 
signal can be triggered at high rates allowing images to be 
processed at very high clock rates but in a way that could 
automatically adjust to variations in environmental conditions 
including scene contrast.  

I. INTRODUCTION  
In recent years it has become increasingly common for 

engineers designing image-processing systems to take 
inspiration from tricks that are used by biological vision 
systems. There are strong arguments in favor of such an 
approach. Both artificial and biological vision systems face very 
similar challenges. For example, both types of systems are often 
faced with the challenge of being able to identify, categorize and 
locate objects and events in complex cluttered scenes that are 
changing constantly. For both types of systems there is a clear 
requirement that these functions are performed as rapidly and as 
reliably as possible, using the most energy efficient hardware 
and while keeping weight and space requirements to the strict 
minimum. In the case of biological vision systems, it is clear 
that any variant that is either faster, more reliable, more energy-
efficient, smaller or lighter than the competition will gain a 
selective advantage and become predominant as a result of 
natural selection. The result of hundreds of millions of year of 
natural selection can be seen in the designs used in our own 
visual systems, as well as those of much smaller organisms such 
as flies. For example, humans can make saccades towards 
animals in complex natural scenes in as little as 120-130 ms [1], 
and saccades towards human faces are even faster. Such levels 
of performance are achieved despite hardware constraints that 
would probably lead any electronic engineer to despair – 
conduction velocities of nerve fibers within the brain are 
typically only 1-2 m.s-1, and the "clock speed" at which neurons 

operate (i.e. the maximum speed at which they can emit pulses) 
is limited to below 1KHz. Relative to today's consumer 
electronics, such constraints seem almost ridiculous. For 
example, the latest GPUs can achieve 2.4 Teraflops and have 
memory bandwidths of as much at 230 Gbytes/sec. The fact that 
we do not yet know how to reproduce the processing 
sophistication of the primate visual system may have more to do 
with our lack of understanding of the underlying computational 
architecture than a lack of processing power per se. Recent 
anatomical studies have shown that the neocortex of an adult 
human contains roughly 16 billion neurons [2], and probably 
less than 25% of these are directly involved in visual processing. 
Reproducing such hardware in an artificial system may be 
feasible within the next decade or so, assuming that we can 
understand the nature of the underlying computations. 

II. IMAGE COMPRESSION IN THE RETINA 
One particularly clear situation where efficient design is 

critical can be seen in the retina. In humans, there are only about 
1 million retinal ganglion cells in each eye. These are the cells 
whose axons project to the brain. Although 1 million fibers may 
seem generous, it would only corresponds to an image 1000 x 
1000 pixels in size, even if each fiber corresponded to one 
"pixel". But, as is well known, the optic nerve has to encode not 
only luminance, but also color, since there are three different 
types of cones, meaning that without very efficient encoding, 
the effective resolution of the retina would be even lower. In 
fact, those 1 million fibers have to encode information from 
around 130 million photoreceptors. Clearly, we can expect that 
the way information is encoded in the retina must be very highly 
optimized by natural selection.  

Since the pioneering work of Lord Adrian in the 1920s it has 
almost universally been assumed that the fibers in the optic 
nerve transmit information in the form of a rate code – since 
more strongly activated cells fire at higher rates. Furthermore, 
the center-surround receptive field organization of retinal 
ganglion cells means that, to a first approximation, the retina can 
be thought of as performing a sort of local convolution on the 
image. Another key point is that retinal ganglion cells are 
divided into "On-center" cells (that are maximally excited by a 
bright point on a dark background) and "Off-center" cells that 
respond best to dark points on a bright background.  
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While the idea of coding the image using a rate code may 
seem plausible, recent experimental work has actually ruled it 
out in the mouse retina, since the amount of information 
available by counting spikes within a given amount of time was 
insufficient to explain the animal's behavioral performance[3]. 
Other coding schemes in which information is encoded in the 
details of spike timing seem inevitable. In one such scheme, 
originally proposed by Thorpe [4], it is the relative order of 
firing across the population of neurons that is used (see also [5]). 
The idea follows naturally from the fact that an integrate-and-
fire neuron can be thought of as a capacitance with a threshold. 
In response to a visual stimulus, retinal ganglion cells will 
charge up progressively until they reach a threshold for 
generating a spike, and the time taken to reach threshold will 
depend on how well the stimulus matches the cell's receptive 
field. For example, one would expect an on-center receptive 
field to fire very quickly when the image contains an 
appropriately positioned bright spot. Simulation studies have 
demonstrated that by using the order in which the cells fire, it is 
possible to reconstruct an image sufficiently well to allow the 
key objects to be identified even when less than 1% of the cells 
in the retina have had time to emit a spike [6]. Furthermore, the 
idea that relative spike timing can be used as an efficient code 
has recently been demonstrated experimentally in the 
salamander retina [7].  

In this paper, we discuss ways in which this sort of order 
based coding could be integrated into a next generation of spike-
based hardware. 

III. CURRENT SYSTEMS FOR SPIKE-BASED PROCESSING 
The possibility of using spike-based processing in hardware 

systems has become increasingly popular in recent years. 
Starting with early work at Caltech, the notion of Address Event 
Representation (AER) has been used in a number of systems. 
The basic idea is that communications between devices can be 
thought of in terms of sending sequences of spikes, where each 
spike is encoded in terms of the identity of the neuron that has 
spiked. For example, in the CAVIAR project, this sort of system 
has been used to develop Convolutional Networks that can 
implement a number of interesting processing architectures [8]. 
Other related work from the group at ETH in Zurich has resulted 
in the development of a 128 by 128 pixel temporal-contrast 
retina device that uses an asynchronous mode of processing [9]. 
Each pixel is effectively associated with two spiking channels. 
One generates a spike when there is an increase in the 
luminance (positive time-derivative) of a pixel that exceeds a 
certain threshold value. The other channel generates a spike 
when there is a decrease in luminance (negative time-
derivative). When a spike is generated, the pixel is effectively 
reset and a new spike is only generated when the luminance has 
changed again. In a static world, spiking is virtually absent, but 
as soon as there is motion, large numbers of spikes can be 
generated. Importantly, since there is no notion of a clock in the 
system, there is nothing like the fixed frame rate that 
characterizes virtually all conventional imaging technology. 

However, it is important to realize that virtually all these 
spike-based coding schemes effectively assume that the 
underlying coding is rate based. For example, in the CAVIAR 
project, the temporal-contrast retina chip generates spikes that 
depend on the luminance time-derivative value at each pixel. 
High luminance derivative at a given pixel will result in a high 
density of spikes from the corresponding neuron in the chip's 
output. This spike sequence can then be fed to a convolution 
chip that adds the weights of the convolution into a new array of 
neurons, and the correct result can be obtained by adding the 
convolution values more frequently for the highly active pixels 
that have high illumination derivative levels. The strategy 
certainly works, but given the previous theoretical and modeling 
work, it seems likely that the computations could be made more 
efficient by using a coding scheme in which there is a periodic 
reset, and information encoded not in the firing rate of the 
neurons, but rather in their order of firing. This sort of 
temporally encoded spiking has already been used in some 
hardware systems (see for example, [10]). 

In the remainder of this paper we will outline a design for a 
retinal chip that uses order of firing to encode local spatial 
contrast, and show how such a system is potentially capable of 
transmitting image information extremely efficiently, using a 
very small number of spikes. The proposed system builds on 
already existing technologies that have been developed for 
performing spike based processing of image contrast [11]. 

 
Figure 1.  Basic design for the connections between a photoreceptor array and 
the summation units. At the finest scale (left), each "neuron" receives a strong 
positive current from the central photoreceptor and negative current inputs from 
the four neighbours. The centre has a weight such that the circuit effectively 
performs a local convolution. The panel on the right shows how a coarser 
convolution can be obtained by using more widely spaced inputs. 

IV. A PROPOSAL FOR SPIKE-ORDER BASED PROCESSING 
Consider a device containing an array of photoreceptors that 

each generates a current that depends purely on local luminance. 
Suppose that each photoreceptor injects current into a local 
summing point, but also (with negative polarity, and via a 
resistive circuit that produces a four-fold reduction in current) 
into the neighboring points.  At a fixed point in time, all the 
summation points are reset to zero, and then they start 
accumulating either negative or positive current, effectively 
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performing a local convolution on the image as illustrated in 
figure 1. This particular choice of coefficients is obviously only 
one of a wide range of convolutions that could potentially 
performed, although the design would be more complicated with 
larger convolutions. Larger range on-center/off-center kernels 
can be implemented via diffusive networks (in practice, up to 
about 20 pixels wide [12]). Let us then suppose that for each 
summing point, there are two voltage thresholds that determine 
if and when spikes are initiated. As soon as the voltage reaches 
the positive threshold, a spike is added to the output stream with 
the appropriate x,y location and with a polarity corresponding to 
an On-center response (see Figure 2). If the negative threshold is 
exceeded, an "Off-center" spike is added to the list. In both 
cases the summing point is then disabled so that only one spike 
per point can be generated.  

 
Figure 2.  The principle of contrast to latency convertion. Photoreceptors (p) 
feeding into a "neuron" (n) with weights that perform a convolution on the 
image. Starting from an initial value at reset, the neuron charges until it reaches 
either the positive threshold (t+) or the negative one (t-). The top panel shows 
how spike latency in the positive channel will vary with contrast (high values 
producing shorter latencies), while the lower panel shows spikes in the negative 
(Off-center) channel when the image contrast is inversed. 

The output of the chip will generate a sequence of spikes in 
which the ordering corresponds to the relative convolution 
values at the various points in the image. The interesting point 
of such a design is that since the highest value convolutions are 
sent first, the information transfer per spike is optimized. 
Indeed, as we will show, a downstream mechanism can then be 
used to reconstruct the image by inserting the receptive field of 
the active neurons in the appropriate position and with the 
appropriate polarity and scale. By progressively reducing the 
weighting depending on the order, it is possible to produce a 
high quality reconstructing of the original image using a 
surprisingly small number of spikes. However, this 
desensitization mechanism may not be strictly necessary when 
the percentage of cells that are allowed to fire is kept low. 

Of course, the time required to for the first image point to 
reach one of the two thresholds will depend on a number of 
factors including the contrast of the image – low contrast images 
will take longer to generate spikes. But, the other factor will be 

the threshold values that in principle can be arbitrarily small. 
With very low thresholds, the chip will generate large numbers 
of spikes very rapidly, but unless there was a lot of noise in the 
circuits, the ordering should remain relatively constant 
irrespective of the actual threshold values used.  

 
Figure 3.  Recontruction of an image using rank-order based coding. We 
simulated a retina with a resolution of 64x64 pixels, and three spatial scales 
using the simple 5 point convolution illustrated in figure 1. Even when only a 
few hundred spikes have been propagated, it is clear that the image is clearly 
recognizable.  

One interesting feature of such a circuit is that it would be 
possible to reset the chip once a certain fixed number of spikes 
has been generated. Consider the case of a hypothetical device 
with 64*64 pixels that uses convolutions shown in figure 1 at 
three scale, i.e. with separations of 1, 2 and 4 pixels. If each 
convolution has two different polarities corresponding to ON- 
and OFF-center responses, this means there would be a total of 
10752 different spike identities. Figure 3 shows that even when 
only the first few hundred spikes have been propagated, it is 
already to reconstruct the input image with enough detail for 
recognition. To obtain this sort of reconstruction, we use a 
weighting function that gives the highest impact to the first 
inputs to fire, and then progressively decrease the weighting 
with increasing rank[6]. As a result, it would be possible to reset 
the chip when only a few percent of the "neurons" have fired. 
Using reasonable values for the spike generation process and 
typical values derived from the designs used in the CAVIAR 
chip sets, we estimate that effective frame rates as high as 10 
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KHz should be feasible, allowing the chip to operate under 
conditions impractical with conventional designs. 

Note that in many ways this sort of chip design provides a 
compromise between conventional frame-based imaging designs 
in which the image is transmitted with a fixed frame rate, and 
the sorts of fully asynchronous and frame-free approaches used 
by Delbruck and others. Effectively, the frame rate can be 
dynamically modified according to the quality of the images 
being processing, slowing the effective frame rate in the case of 
low contrast images, and allowing extremely high rates in the 
case of high contrast images. 

 

V. PRACTICAL CONSIDERATIONS 
A number of practical circuit oriented considerations are 

required to map the ideas outlined above to functional 
hardware. First, photocurrents vary from a few femto amperes 
to fractions of microamperes. Consequently, integrating 
directly photocurrents yields systems where timings depend 
directly on illumination level, resulting in delays that may vary 
up to 9 decades. This is absolutely impractical, unless 
illumination conditions are restricted. Therefore, in general, a 
first step would be to scale photocurrents to a fixed level of 
“pixel operation current”, preserving scene contrast. 

Second, manipulating photocurrents (such as a simple 
scaling) with present day CMOS technology results in 
excessive inter-pixel mismatch (spatial fixed pattern noise). 
Unless direct manipulation of photocurrents is avoided [9, 11], 
some calibration means will be required [12]. Although present 
day reported calibration circuits are bulky and offer rather low 
precision, the combination of CMOS technology with new 
nanoscale memory devices could be a promising solution [13]. 

 
VI. CONCLUSIONS 

Although retina chips based on the ideas presented here have 
not yet been implemented, there is every reason to believe that 
they could have very interesting properties. None of the basic 
features require technologies that have not already been 
implemented in previous systems. Simulation work has already 
shown that the principle of order based coding can be 
remarkably powerful [14]. Furthermore, this sort of coding can 
be coupled with other biologically inspired mechanisms such as 
Spike Time Dependent Plasticity (STDP) to produce systems 
capable of learning to detect frequently encountered stimuli 
using purely unsupervised learning techniques [15, 16]. Such 
principles can also be included in electronic devices. 
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