Hardware Accelerated Convolutional Neural
Networks for Synthetic Vision Systems

Cléement Farabét, Berin Martin?, Polina Akselrod, Selcuk Talay, Yann LeCuni and Eugenio Culurcielfo
! The Courant Institute of Mathematical Sciences and CewieN&ural Science, New York University, USA
2 Electrical Engineering Department, Yale University, Newvien, USA

Abstract— In this paper we present a scalable hardware archi- Figure/ 1. In this figure we report a network used for generic
tecture to implement large-scale convolutional neural networks object recognition of N classes. Such a network has been

and state-of-the-art multi-layered artificial vision systems. This successfully used to classify different objects in numerou
system is fully digital and is a modular vision engine with the goal applications [5]

of performing real-time detection, recognition and segmentation
of mega-pixel images. We present a performance comparison ConvNets have several advantages as a front-end for syn-

between a software, FPGA and ASIC implementation that shows thetic vision systems that perform object categorizatesks.
a speed up in custom hardware implementations. First, they operate with local receptive fields by perforgin
convolutions: they share weights in the convolution masijc
so large images can be processed with a reduced set of weights
Micro-robots, UAVs, imaging sensor networks, wireles§his is important as the number of weights in the network
phones, and other embedded vision systems all require I@vthus not proportional to the input image (i.e. the final
cost and high-speed implementations of synthetic visi® syrocessing network size is fixed for a specific task.). Second
tem capable of recognizing and categorizing objects in aescespatial subsampling/pooling is used to hierarchicallyucsd
Virtually all recent synthetic vision algorithms targegigen- the input data size at each step of nonlinear computation.
eral recognition problems use one or more layers of filtekbanReplicating a small, local receptive field extracts eleragnt
organized hierarchically to report some degree of invaganfeatures from a large input, while sub-sampling the result
in position, angle and size of the image features [1]. Exasiplreduces the effect of distortion and scale. Combining these
are the SIFT algorithm, [2], bio-inspired algorithms madegl features produces higher-order features that have verg goo
the mammalian visual system [3], and deep architecturehift, scale and distortion invariance, a typical featuréigh-
[4], [5] using multi-layer neural networks. Synthetic wisi |evel mammalian vision systems [3]
algorithms with multiple layers of features extraction and An important aspect of ConvNets is that all of their pa-
learned parameters perform the best [1]. Learning providesmeters can be learned from the data to be modeled. In the
significant performance improvements when specific targetstwork presented in Figure 1 for instance, all the weights
are known a priori [4], [6]. Convolutional neural networksrom the filter banks, pooling functions, and also from the
(ConvNets) are a synthetic vision architecture that embeglgssifier are learned at the same time, by using stochastic
all these features. ConvNets are feed-forward neural mésvogradient descent on labeled dataset. When compared to hand-
with multiple layers of convolution filters and non-linei@s tweaked feature extractors, ConvNets are more compact, and

I. INTRODUCTION

[4], [6]. amenable to general purpose recognition tasks.
In this paper we present a scalable hardware architecture
for large-scale multi-layered synthetic vision systemsdoon I1l. SYSTEM IMPLEMENTATION

large parallel filter banks. This hardware can also be used toA fully-digital coded hardware implementation of a scatabl
accelerate the execution (and partial learning) of recesmdv ConvNet [4] has been developed and implemented. Small
algorithms like SIFT and HMAX [2], [3]. This system is aanalog versions of ConvNets have been implemented, but at
data-flow vision engine that can perform real-time detectiothe time were not able to scale [7]. We believe a fully-digita
recognition and localization in mega-pixel images proedssimplementation with current FPGA and ASIC technologies is
as pipelined streams. The system was designed with the gbml easiest way to get a software-compatible object-retiogn
of providing categorization of an arbitrary number of olgec networks, that is easy to setup and operate, use reduced powe
while consuming ten times less than a bench-top or laptepnsumption and provides high numeric precision. The entir
computer (target< 10W). system is coded in hardware description languages (HDId), an
is targeted for ASIC synthesis or programmable hardwaee lik
FPGAs. The design is a custom single instruction multiple
Convolutional neural networks or ConvNets are a specidata (SIMD) processor based on a 32 bit CPU with hardware-
kind of neural networks that take advantage of the localfty accelerated instructions tailored to ConvNet operatidhgse
data in images to reduce the number of parameters neededgerations are highly optimized and make use of the paral-
process large images. An example of a ConvNet is given liglism available in hardware.

II. CONVOLUTIONAL NEURAL NETWORKS

Convolutions w/ Pooling: Convs: Pooling: Convs: Object

Local Divisive) Linear
L filter bank: 20x4x4 100x7x7 20x4x4 800x7x7 o Categories / Positions
Normalization 20x7x7 kernels kernels kernels kernels kernels Classifier 9
J »{ L‘;\ yat (i)
il 4] ;. . * \
e g =Y s H —— { }at (xi,yj)
== === | S2:20x128x123 ™ [r&g:q\\q
Input Image Normalized Image 3 52 S4: 20x29x29 |
1x500x500 1 20x29x ag| il
1x500x500 C1: 20x494x494 C3: 20x117x117 { L‘i‘; } }at (xk,yk)
N

C5: 200x23x23

Fig. 1. Architecture of a typical convolutional network fobject recognition. This implements a convolutional featextractor and a linear classifier for
generic N-class object recognition. All filter kernels sizge mentioned above the networks, and are all learned frioeteld data. The bottom numbers report
the size of image maps at each layer of the network. The netwartlkbe computed on arbitrary large input images, producingssi€ieation for each 40x40
sub-window (size of the training data).

Our first implementation of a ConvNet processor on FPGAon-linear mappings (such as: sigmoid, hyperbolic tangent
was developed on a Xilinx Virtex-4 SX35 FPGA board. Thequare root, rectification), 5) element-wise division ofegtor
FPGA was connected to external QDR-SRAM memory in lay another, 6) element-wise multiplication of a vector by
custom designed printed circuit board [8]. The custom boaashother. The 2D convolutions in a ConvNet use 80 to 90% of
operates at 200MHz with a 72bit wide bus to the memory artide total amount of computations performed by the network,
7.2GB/s of memory bandwidth, and was able to implemenb large arrays of multiply-accumulate units are needed to
convolution arrays of up to 13x13 with the 192 multiplieraccelerate the system [8].
of the Virtex-4 FPGA SX35. This system achieved very good We chose Q8.8 as coding of numbers in the network, after
performance, but had limitations in its architecture thegd estimating the influence of quantization noise. The pigelin
to suboptimal usage of the available bandwidth. implementation of the convolution operation in hardwarg (a

A Architecture described in [8]), computes equation 1 at every clock cycle.

The second-generation architecture proposed in this paper K-l1E-1
was designed to increase data throughput by adding multi- Zij = Yij + Z Z Litm,j+nWmn, 1)
ple parallel vector processing units and allowing indiadu m=0 n=0

streams of data to operate seamlessly within processimghlo In equation_1z;; is a value in the input planey,,, is
A schematic summary of th&ream Processor system is a value in akK x K convolution kernely;; is a value in a
presented in Figure 2. The main components of our system giine to be combined with the result, ang is the output
(1) aControl Unit CPU, (2) multiple paralleALUs/Sreaming plane. Both the kernel and the image are streams loaded from
Operators, and (3) aMemory Interface Sreaming Engine. the memory, and the filter kernels can be pre-loaded in local
A general purpose CPU acts as a flexible Control Unit for caches concurrently to another operation: each new pixsl th
our system by controlling the configuration bus. Other mesdlultriggers K’ x K parallel operations. The convolution pipeline
in the system are connected to a global configuration bus, 32bit wide, to keep full precision between successive
which allows for run-time reconfiguration of any paramete@ccumulations.
in the system: from the connections between processirg tile All the non-linearities in neural networks are implemented
to the 2D data dimensions mapped to the external memoryith a piecewise linear approximation operator, as desdrib
The ALUs are independent processing tiles laid out on lay 2. The piecewise mapping is performed by a hardware
two-dimensional grid. Each tile is composed of:Ghobal mapper, which streams the input data through a cascade of
Router, Local Routers, a Streaming Operator. The ALUs in simple linear mappers. Each mapper is configurable at run-
Figure[2 have been simplified for clarity: each tile actuallime, so many different functions can be programmed and used
contains four local routers to stream data from/to any oirthén the network. By using coefficient; in equation 3, all the
four neighbors, and one global router to stream data fromfinear mappings can be implemented with shifts and adds only
global data lines. The local and global routers are confitjure
at run-time to allow arbitrary routes of data streams in amd o

each tile. g(@) =aix+b; for € [lili] @)
The operators in the ALU are fully pipelined to produce a; = 1.1 m,n € [0,5]. 3)
one result per clock cycle. The ALUs implement all the 2m 2

typical macroscopic operators required to compute layérs o The data lines to and from memory are handled by a
bio-inspired models, and more precisely ConvNets: 1) 2Bultiport DMA Streaming Engine specifically designed for
convolver (implemented in the FPGA by the dedicated mulmage manipulations. The streaming engine interfaces any
tipliers), 2) dot products between a vector and multiple 2kind of memory module (internal or external), and offers
planes, 3) spatial pooling (image subsampling), 4) antyitraNx16bit asynchronous read/write ports on the other side,

STREAM PROCESSOR Data Lines : Nx16bit

DVIin Camera

Global Router

T—%

Data Interface

General
Purpose
CPU

DVIout Monitor

Bus Controller

Multiport
DMA
Streaming
Engine

Global Router

L]
OPERATOR [
Bus Decoder

Global Router

[
[5| OPERATOR
Bus Decoder
ALU

RAM

Local Router
Local Router

Mem Interface

Local Router
Local Router

Configuration Bus : 32bit + Status : 3bit
Control Unit Processing Tiles / ALUs = Streaming Operators Memory Interface DVI Capture
[general purpose cpu] [convolution, piece-wise mapping...] Streaming Engine & Generation

Fig. 2. Overview of the hardware ConvNet system. A CPU was auggdewith multiple full-custom ALUs tailored to ConvNet opéibns, and a fast
streaming memory interface. ALUs are organized on a 2D gridy tten stream data to their closest neighbors, and to the Igliles connected to the
memory interface.

which allows multiple simultaneous streams from/to the sangonverted to a compact representation that can be intetpret
memory locations, even if at different data rates. A deeidatby an embedded program (running on the CPU) to generate
arbiter is used as hardwaidemory Interface to multiplex the control/configuration for the system. Special softwaas
and demultiplex access to the external memory with higleveloped to unify these two steps. This software, written i
bandwidth. Subsequent buffers on each port insure cotfinupure C++, is used to train then execute ConvNets on a variety
of service on a port while the others are utilized. of embedded platforms, with or without hardware accelermati
This module is the foundation of our system: it allows anyhe library, called Nrgizer, provides a high-level modudaud
other module in the entire design to read/write any imagealable implementation of ConvNets (similar to L@&h
as a continuous stream of pixels from/to memory without A typical setup would be as such: 1) Nrgizer is used on
any concern for the others. This allows to perform multiple computer to train a ConvNet for a particular task, using
operations (such as convolutions) on multiple image mapssaime dataset, 2) the trained network is saved and quantized
the same time. to the Stream Processor's Q8.8 coding, 3) it is sent to a
In our current system, the ALUs are synchronous to thienning version of Nrgizer on the Stream Processor, anddsave
memory bus clock, which gives the following relationshigocally (flash memory), 4) it is then interpreted on the CPU,
between the memory bandwidth, the number of possible by using all the ALUs/Streaming capabilities that are im-
parallel data transferd’ and the bits per pixeP: N = B/P. plemented in Nrgizer as low-level routines (software Caintr
For exampleP = 16bit and B = 128bit/cyc allows N = 7 Unit), 5) embedded Nrgizer has full access to the data, and

simultaneous transfers. can perform post-processing operations for object detecti
_ such as non-max suppression, calculations of centroids of
B. Operation activities (attention), and other functions that do notassitate
The typical execution of an instruction on this system {@n hardware implementation.
the following: 1) the CPU configures each tile to be used IV. RESULTS

for the computation and each connection between the t”eSFigures[:B and 4 report a performance comparison between

and their neighbors and/or the global lines, by sending aalaptop CPU, a FPGA implementation, and a future ASIC

configuration command to each of them, 2) it configures tri]e lementation for the computation of the ConvNet presénte

streaming engine to prefetch the data to be processed, anﬂm igure[1. This network is composed of a non-linear nor-

be reat_jy t.o write the resultg, 3) when the streaming enginer.T'fetIization layer, 3 convolutional layers, 2 pooling layers
ready, It triggers t_he streaming out, 4) each ALU processses and a linear classifier. The convolutional layers and pgolin
respective incoming streaming data, and passes the rmu“?asyers are followed by non-linear activation units (hypit

another tile, or back to the streaming engine, 5) the CI:’Ut'angent). Overall, it possesses 920 KxK learned kernels, 40

notified of the end of operations when the streaming engine i°\carned subsampling kernels, anc200 dimension clas-

has completed. The behavior of each port in the Streamin

Engine can be configured separately by using the confignratSFFication vectors. For a 500x500 input image ahd= 7,
bus. The configuration consists of the 2D offsets and 2 e network has 435 Million linear connections (multiplydan

dimensions of an image in memory (which is viewed as twgccumulate operations).
9 y Figure[3 shows the frames per second versus input image

d|m§n5|0nal b'y the streaming engine). size with a fixed 9x9 convolution filtet’{ = 9) for the whole
Prior to being run on the Stream Processor, a ConvNet

has to be trained offline, on a regular computer, and theriLisp Universel SHelltht t p: / /1 ush. sour cef or ge. net

http://lush.sourceforge.net

ConvNet, and 5 output classel 5). When the input image time (> 30fps) with filters up to 21x21 in size, and images
size varies, the network adapts the sizes of all its interr@bproaching 1 mega-pixels.

maps accordingly, producing an output map with a size ligear Nrgizer has been tested on standard dataSatstl NORB,
related to the input size. MNIST and theUMASS face dataset. FANORB, 85% recog-

Figure[4 reports frames per second vs convolution filt@ition rate was achieved on the unknown datasetMbi ST,
sizes, assuming the ConvNet uses the same filter size in @86 and forUMASS, 98%. The same test were conducted on
three layers, an input image of 500x500 pixels, and oth#re Stream Processor with fixed-point representation (Q8.8
parameters as mentioned above. When the kernel sizes vand the results were, respectively: 85%, 95% and 98%.
the internal maps sizes vary accordingly.

The CPU data was measured from our compiled library]
Nrgizer (optimized C code, GNU C compiler) on a Core 2 We report t.he design of a hardware accelgrated _ConvNet
Duo 2.4GHz Apple Macbook PRO laptop operating at 90vgyStem that is capable of running in real time with low
the FPGA data was measured on a Xilinx Virtex-4 Sx3gower consumptions, while providing performance that is
operating at 200MHz and 15W with 3 data lines used i_getter than conve_ntional_laptop computers. This_ architect
parallel (to and from the external memory) [8], and the ASI¢S dem_or?strated. in multiple .FP.GA mplementatlons. Future
data is simulation data gathered from Tezzaron 3D processW&k will include implementation in a high-performance ASI
conservative estimate of the projected ASIC speed is 400MSyStem capable of delivering real-time operation on 1 mega-
(speeds of up to- 1 GHz are possible) with 8 ALU convolversPixel images with 1W of power. _
running in parallel, and 10 data lines. The projected powerWhile our current FPGA implementation can perform

V. CONCLUSION

consumption of the ASIC is 1W. medium complexity tasks such as face detection/tracking in
real-time, the ASIC implementation will open the doors to
T — — more complex and generic recognition tasks. Multiple abjec
I detection [5] or online learning for adaptive robot guidai@]
5 —_— are tasks that will be largely improved by this system.

ACKNOWLEDGMENT

This work was partially supported by NSF grant ECCS-
0901742, by ONR MURI BAA 09-019, DARPA NeoVision2
program BA 09-58.

REFERENCES

[1] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “Wisathe best
multi-stage architecture for object recognition?” noc. International
Conference on Computer Vision (ICCV'09). |IEEE, 2009.

A [2] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of featiSpatial

100 200 300 400 500 600 700 800 pyramld matching for recognizing natural scene Categoﬁe€VPR '06:

image size Proceedings of the 2006 | EEE Computer Society Conference on Computer
Vision and Pattern Recognition. Washington, DC, USA: IEEE Computer
Fig. 3. Frames/s from a ConvNet similar to Fig.1 vs the size pliiimages Society, 2006, pp. 2169-2178.)
and using convolutional filters of 9x9. [3] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Biog “Robust
object recognition with cortex-like mechanism$EEE Transactions on
10° I———— Pattern Analysis and Machine Intelligence, vol. 29, no. 3, pp. 411-426,
—e—CPU 2007.
:igﬁf [4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradidmased learning
applied to document recognitionProceedings of the |EEE, vol. 86,
102} | no. 11, pp. 2278-2324, November 1998.
/\—_\' [5] Y. LeCun, F.-J. Huang, and L. Bottou, “Learning methods @eneric
object recognition with invariance to pose and lightingy’Rroceedings
of CVPR04. IEEE Press, 2004.
"""""] [6] M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun, “Unsusad learning
S of invariant feature hierarchies with applications to @bjecognition,” in
So-o- Proc. Computer Vision and Pattern Recognition Conference (CVPR 07).
IEEE Press, 2007.
[7] E. Sackinger, B. Boser, J. Bromley, Y. LeCun, and L. D. Jackel,

0
10 “Application of the ANNA neural network chip to high-speetaracter
recognition,” IEEE Transaction on Neural Networks, vol. 3, no. 2, pp.
498-505, March 1992.

10" L [8] C. Farabet, C. poulet, J. Han, and Y. LeCun, “CNP: An FPlased
3x3 7x7 11x11 15x15 19x19 Processor for Convolutional Networks,” imternational Conference on
filter sizes Field Programmable Logic and Applications. Prague: IEEE, September
2009.
Fig. 4. Frames/s from a ConvNet similar to Fig.1 vs the size ofolution [9] R. Hadsell, P. Sermanet, M. Scoffier, A. Erkan, K. Kavaauo
filters for a fixed image size of 500x500. U. Muller, and Y. LeCun, “Learning long-range vision for anbmous
As we can see from these results an ASIC system or a off-road driving,” Journal of Field Robotics, vol. 26, no. 2, pp. 120-144,

modern Virtex 6 FPGA can run the ConvNet system in real February 2009.

	Introduction
	Convolutional Neural Networks
	System Implementation
	Architecture
	Operation

	Results
	Conclusion
	References

