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Abstract—The purpose of this paper is the synthesis from the
frequency domain standpoint of a controller for switching power
converters with the aim to eliminate bifurcation and chaotic
behavior. Firstly the paper analyzes the frequency response of
previous delay-based chaos controllers unveiling that they are
based in comb-filtering at multiples of the sub-harmonic half
of the switching frequency. Secondly, chaos control is explored
by using both a single notch filter and a bandstop filter at half
of the switching frequency. It is demonstrated that the latter
achieves chaos rejection while being an implementation-aware
simplification of delay-based methods.

I. INTRODUCTION

Switching power converters are used in a wide range of
power management applications due to their potential for high
efficiency and size reduction, despite they tendency to exhibit
instabilities. Keeping high efficiency whilst guaranteeing sta-
bility is becoming challenging, especially for the new trends
in power management which demands further miniaturization
and even on-chip integration of switching power converters.
This requires to reduce the reactive components size, leading
to an increase of switching frequency in order to keep the
same dynamics, which is in turn limited due to efficiency
constraints. This limitation results in an increase of converter
ripples rendering the converter to be more prone to exhibit the
so-called fast-scale chaotic instabilities.

In past less demanding applications, the dynamics modeling
of such converters has hitherto been carried out by means
of average models [1], which are based on a design-oriented
circuit-perspective facilitating the synthesis of conventional
controllers in the frequency domain. However, these models
are inherently limited to only predict the so-called slow-scale
instabilities since they do not fully take into account fast
dynamics.

Conversely, such fast-scale instabilities have been predicted
from a mathematical standpoint by deriving discrete-time mod-
els [2]-[4], which despite having excellent prediction accuracy,
lack a design-oriented circuit-based perspective.

Fast-scale instabilities or chaos control approaches have
been widely explored previously from different standpoints
[5]. One of the most relevant chaos control methods is the so-
called time-delay feedback control (TDFC or TDAS) [6], [7]
or its further extensions (ETDAS) [8]. Apart from the difficulty
of implementing continuous-time delays, this set of chaos
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Figure 1. Buck converter under voltage-mode proportional controller (kp)
and constant frequency PWM along with a chaos controller G(s)

controllers are either analyzed by studying their impact upon
the discrete-time maps, or by directly characterizing the effect
of each chaos control parameter upon the converter stability,
difficulting the controller design itself.

This work deals with the synthesis of alternative chaos
controllers, derived from a frequency domain interpretation of
delay-based controllers, with the ultimate aim of simplifying
their design and implementation.

Complementarily to the aforementioned discrete-time mod-
eling for predicting fast-scale instabilities, some recent inves-
tigations lead to quantitatively relate the fast-scale stability
occurrence boundary to the ripple at the input of the modulator
(prs) [9], providing a design-oriented criterion for predicting
fast-scale instabilities which compresses the whole parameter
space into a single instability index. Therefore, such ripple
index has been taken as a sweep parameter in the bifurcation
diagrams used in this work. The stability boundary improve-
ment in terms of fast-scale instability Ap will be used as a

merit figure:

Ap="Le ()

Pco
being p. and p.o the ripple stability boundary with and without
the chaos controller G(s), respectively.

This work considers a voltage-mode controlled DC-DC
buck converter with constant frequency PWM and proportional
control as it is shown in Fig.1 with parameter values: V, = 3
V,Viep =15V L=40nH,C=50nF R=14Q, f, =25
MHz, which are representative of a low-power miniaturized

2928



-~

Period 2

\

Period 1

3
.)..x_,“._____

\

02 025 03
Bifurcation parameter pps

Figure 2. Bifurcation diagram showing period doubling route to chaos by
increasing prg in a Buck converter. p.0=0.2475

Figure 3.

Simple and extended Time-delay feedback control scheme

converter, being p.o ~ 0.25.

The evolution of such converter dynamic behavior in terms
of the stability index ppg is shown in Fig. 2. A period-
doubling bifurcation scenario is clearly observed giving rise to
sub-harmonic oscillations and ending up in chaotic behavior.
This figure was obtained by sweeping the controller gain, and
in turn ripple prg, and plotting a steady state representative
state variable (capacitor voltage) sampled at the switching
frequency rate.

The remaining of the paper is structured as follows. First,
Section II explores the frequency response of delay-based
controllers as well as the effect of their parameters on sta-
bility boundaries. Subsequently, Section III demonstrates that
by modifying the controller frequency band around half of
the switching frequency through bandstop filters, control of
fast scale instability while simplifying the implementation is
feasible.

II. TIME-DELAY FEEDBACK CHAOS CONTROLLERS
(TDFC)

This section revisits time-delay feedback chaos controllers,
which are based on adding a time-delay module, as it is shown
in Fig. 3. The extended TDFC scheme includes an additional
feedback inner loop, added to the delayed variable. Their
Laplace domain transfer function can be expressed as:
esT —1
T 5
where (3 is zero for the TDFC and it takes a non-null value
in the case of extended TDFC.

From the frequency responses of both controllers (Fig. 4),
it is possible to observe that they implement a comb-filtering
function located at half of the switching frequency and its
harmonics, whereas it has no effect at the switching frequency,
hence demonstrating the non-invasive nature of such delay-
based controllers. Such behavior in frequency domain unveils
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Figure 4. Frequency response of G(s) with 8=0 (TDFC, dashed-line)
and (3=0.5 (extended TDFC, solid-line) v=0.5 showing attenuation at half
of switching frequency (vertical dashed-line)

that chaos control is carried out by avoiding the exhibition of
sub-harmonic dynamics.

Regarding the design-space of TDFC chaos controllers,
two parameters are identified, namely ~ and (. Numerical
simulations show that only some ranges of ~ values are valid
to avoid instabilities. By increasing the ~ value, the stability
margin in terms of fast-scale is improved, being vrg the
minimum value required to avoid such instabilities. On the
other hand, the higher ~ is, the closer the system is to the slow
scale stability boundary, exhibiting Hopf instabilites when -~
reaches a critical value ygg as it is shown in Fig. 5.
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Figure 5.  Bifurcation diagram resulting in Hopf instability by increas-
ing parameter v of TDFC and ETDFC (with 8=0.5). vrs,7D0Fc=0.05
vss,rprc = 0.21 yps grDFc=0.08 vss,ETDFC = 0.55 (simulated
for prs=0.2813)

The dynamic behavior in Fig. 5 shows that the major effect
of the [ parameter in the extended TDFC case is to shift
away the border of occurrence of Hopf bifurcation yggs due
the smoothing of the phase response. Fig. 6 shows that the
extended TDFC case, which is slow scale stable for higher v
values, can benefit of such + higher values to achieve better
fast scale stability margins.

Regardless of the advantage of the extended TDFC, the main
drawback of using a delay still holds, thereby compromising
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Figure 6.  Bifurcation diagram in terms of ppg (kp) with TDFC (=0
~v=0.15) Ap=202% and with extended TFDC (3=0.5 v=0.3) Ap=278%

its implementability.

[II. NOTCH AND BAND-STOP FILTER CHAOS CONTROLLER

The controllers analyzed in the previous section are based
on eliminating the sub-harmonic components from the feed-
back path in order to reduce their effect on fast-scale dynamics.
However, it will be shown in this section that it is enough
to attenuate the first sub-harmonic (at half of the switching
frequency) to obtain a successful control of chaos.

A direct way to attenuate sub-harmonic frequency is by
means of a bandstop filter, the general transfer function of

which is given by:
52 4+ 26 wps + w%

G =
(s) 82 + 28wp s + w2

where w, = =fs (half of the switching frequency) and
Q=(2£2) 1. Note that for £;=0, the transfer function is a pure
notch filter centered at half of the switching frequency.

The bifurcation diagram in Fig. 7 shows that by using
such ideal notch filter controller (§&; = 0), the stability
boundary can not improve due to the previous exhibition of
a quasiperiodic slow-scale instability. Despite the fast-scale
boundary is shifted away, a slow-scale instability appears,
thereby reducing the overall stability margin.

This behavior can also be shown by deriving the discrete-
time map of the controlled converter (see Appendix), the
evolution of which is shown in Fig. 8. The diagram shows
that the notch filter produces the eigenvalues to cross the unit
circle with imaginary values (which is indicative of slow-scale
instability) during an interval after which they end up in real
negative values (which is indicative of fast-scale instability)

Analogously to the extended TDFC case, a band-stop filter
(&1 > 0) is used instead of a pure notch, hence leading to
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Figure 7. Notch controller with Q=500 (£1=0 and £2=0.001) frequency
representation (Bode plot), centered at half of switching frequency (vertical
dashed-line) and bifurcation diagram by sweeping prs(kp). FS instability
improvement Ap=96%
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Figure 8. Eigenvalues of the Jacobian derived from discrete-time map of the
buck converter with a notch filter (£2=0.001) by sweeping prg as in Fig. 7

smoothing the frequency response in terms of both magnitude
and phase, therefore maintaining the system farther away from
the slow-scale instability boundary, as quantitatively indicated
in an increase of Ap=204%.

The Bode response of the band-stop filter and the route to
chaos diagram are shown in Fig. 9. Note that the trajectory
of the eigenvalue shown in Fig. 10 is different from the pure
notch trajectory, since they cross the unit circle in -1, hence
leading to period-2 bifurcation alone.

By properly adjusting the values of & and &, a similar
stability boundary improvement as TDFC is reached in terms
of Ap, but simplifying the implementation regarding delay-
based controllers.

IV. CONCLUSIONS

This paper explores chaos control methods for switching
power converters from a frequency domain standpoint, with
the goal of synthesizing alternative controllers with simpler
implementation. The work has firstly revisited, in the fre-
quency domain, previously proposed chaos controllers (TDFC
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Figure 9. Bandstop controller frequency representation (Bode plot) centered
at half of switching frequency (vertical dashed-line), and bifurcation diagram
by sweeping prs(kp) and £1=0.5, £2=0.9. FS instability improvement
Ap=204%

Figure 10. Eigenvalues of Jacobian derived from discrete-time map of the
buck converter with a bandstop filter (£1=0.5, £2=0.9) by sweeping prg as
in Fig.9

and its extended version), thereby showing that they are based
on comb-filtering at multiples of sub-harmonic frequencies.
Subsequently, a notch filter at half of the switching frequency
is proposed as an implementation-aware simplification of
time-delay-based controllers. Such narrowband tuned band-
pass filter compensator effectively controls fast-scale period-
doubling, but incurs in making the switching regulator more
prone to exhibit slow-scale instability. Consequently, a band-
stop filter is finally proposed as an implementation-aware
effective chaos controller. The study of both alternatives has
been carried out by bifurcation diagrams from the instanta-
neous converter equations contrasted to the predictions from
the corresponding discrete-time maps.
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VI. ANNEX: NOTCH AND BAND-STOP FILTER
DISCRETE-TIME MAPS

In order to derive the discrete-time map for a buck converter
with either a notch or a band-stop filter, the additional second-
order dynamics of the chaos control filters are added to the
converter dynamics, thereby increasing to fourth order the
order of the complete closed-loop system dynamics expressed
by the state equations in each switching interval (& = Ax+ B).

The discrete-time map for such system can be expressed as:

P(xn) = Xeg2+ -
+ ¢2(T - dnT)(Xeq,l + QS] (dnT)(fEn - Xeq,l) - Xeq,2x4)

where X, ; = —A;lBi is the equilibrium point of the linear
configuration i (i € {1,2}) and ¢;(t;) = eiti.

Additionally, the switching surface, which depends upon the
controller law and the modulator (PWM with saw-tooth /(1))
can be expressed as:

o(t) = K[Xfifbl + ¢1(dn T (2 — Xeq,l)] —h(t) (5

where K= ( —kp 0 0 Fkp(&e—&)2wpLy ) being w,
the center frequency of the notch filter.

The stability analysis is carried out by studying the local
behavior of the map in the vicinity of steady-state (z*), thereby
extracting a Jacobian matrix DP, the eigenvalues of which
describe the amount of expansion and contraction:

SP 6P [d0\ ! b0
pp=2_°9%9 (9223 ¢
ox, O0d, <5dn> 0Ty, ©
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