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A New Algorithm for Double Scalar Multiplication over Koblitz Curves

Jithra Adikari∗ Vassil S. Dimitrov∗ Renato J. Cintra†

Abstract

Koblitz curves are a special set of elliptic curves and have improved performance in computing scalar multiplication in elliptic curve
cryptography due to the Frobenius endomorphism. Double-base number system approach for Frobenius expansion has improved
the performance in single scalar multiplication. In this paper, we present a new algorithm to generate a sparse and joint τ -adic
representation for a pair of scalars and its application in double scalar multiplication. The new algorithm is inspired from double-base
number system. We achieve 12% improvement in speed against state-of-the-art τ -adic joint sparse form.
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1 Introduction

Let Koblitz curve be

Ea : y2 + xy = x3 + ax+ 1, (1)

where a ∈ {0, 1}, E(F2m) a group of points on Ea for some
extension field F2m and n the group order of Ea(F2m ). Any
point P ≡ (x, y) ∈ Ea(F2m) has following properties

[τ ]P = (x2, y2) and − P = (x, x+ y), (2)

where τ is called the Frobenius map over Ea(F2m). Further,
there exists a point at infinity denoted by O [1]. The point at
infinity satisfies the properties,

[τ ]O = O and −O = O. (3)

The Frobenius mapping of a point can be computed by squar-
ing its coordinates. The cost of the squaring is very cheap and
fast in its hardware implementation with both polynomial and
normal basis representations [2]. In the digital signature verifi-
cation of an elliptic curve cryptosystem, double scalar multipli-
cation [k]P + [l]Q consumes most computational power, where
P,Q ∈ Ea(F2m) and k, l ∈ [1, n − 1]. The scalar k, l are repre-
sented in τ -adic expansion to obtain the advantage of Frobenius
map by replacing point doublings.

Let Z[τ ] be a ring of polynomials in the form
∑l−1

i=0 uiτ
i, where

l is the length of the polynomial, ui ∈ {0,±1} for all 0 < i < l−1
and ul−1 = ±1. First, both scalars are converted or reduced in
Z[τ ] to complex numbers such that l is minimal. The reduction
in Z[τ ] is defined as ρ ≡ k mod δ, where k is an integer in
[1, n−1] and δ = (τm−1)/(τ−1). Next τ -adic non-adjacent form
∑l−1

i=0 uiτ
i with l/3 average Hamming weight is computed [3].

Then two τNAFs are used as inputs to generate τ -adic joint
sparse form (τJSF) of both scalars with average Hamming weight
of l/2 [4].

Dimitrov et al. has introduced the two dimensional Frobe-
nius expansion (TDFE)

∑l−1
i=0

∑k

j=0 ui,jτ
i(τ−1)j , where l is the

length of the τ -adic expansion, ui,j ∈ {0,±1} and k is an integer
to compute single scalar multiplication [5]. Note that TDFE can
be reduced to a polynomial in Z[τ ] [5].

∗Department of Electrical and Computer Engineer-
ing, University of Calgary, Calgary, AB, Canada.
Email: jithra.adikari@gmail.com,vdvsd103@gmail.com

†Signal Processing Group, Departamento de Estat́ıstica, Universidade
Federal de Pernambuco, Recife, PE, Brazil. E-mail: rjdsc@de.ufpe.br

Our approach towards the double scalar representation is
based on TDFE. Our algorithm delivers a joint and sparse two
dimensional representation that can be reduced to Z[τ ]. It is
used with Straus’ idea [6] to compute double scalar multiplica-
tion and perform minimum number of point additions. Our new
algorithm, joint two dimensional Frobenius expansion (JTDFE)
is having 15% improvement in terms of speed compared to
τJSF in its implementation on a field programmable gate ar-
ray (FPGA).

This paper is arranged as follows: two dimensional Frobenius
expansion is discussed in Section 2. The construction of new al-
gorithm JTDFE is discussed in Section 3. Section 4 explains the
hardware implementation. We conclude the paper in Section 5.

2 Two Dimensional Frobenius Expansion

The Frobenius map τ is a complex number with value (µ +√
−7)/2, where µ = (−1)1−a. A complex number in the form of

a+ τb, where a, b ∈ Z is called a Kleinian integer [7]. Next, we
define the {τ, τ − 1}-Kleinian integer.

Definition 1 {τ, τ−1}-Kleinian integer A Kleinian integer ω of
the form ω = ±τx(τ −1)y, where x, y ∈ Z

∗ is called a {τ, τ −1}-
Kleinian integer.

The two dimensional Frobenius expansion of an integer can
be represented as in the following equation:

k =

d
∑

i=1

siτ
ai(τ − 1)bi , (4)

where d is the length of the expansion si = ±1 and ai, bi ∈ Z
∗.

We rearrange (4) as follows:

k =

max(bi)
∑

l=1

(τ − 1)l





max(ai,l)
∑

i=1

si,lτ
ai,l



 , (5)

where max(ai,l) is the maximum power of τ that is multiplied
by (τ − 1)l in (5).

Algorithm 1 illustrates the routine to compute the single scalar
multiplication [k]P when the {τ, τ−1}-expansion of k is given. In
order to simplify, we denote the terms corresponding to (τ − 1)l

in (5) with rl(k), i.e. rl(k) =
∑max(ai,l)

i=1 si,lτ
ai,l . The multiplica-

tion [τ −1]P costs one Frobenius mapping and a point addition.
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Algorithm 1 Scalar Multiplication using Two Dimensional
Frobenius Expansion

Require: Two dimensional Frobenius expansion of k ∈ N and
a point P ∈ E(F2m).

Ensure: Q = [k]P .
1: P0 ← P
2: Q← O
3: for l = 0 to max(bi) do
4: S ← [rl(k)]Pl {one dimensional τNAF corresponding to

(τ − 1)l in (5)}
5: Pl+1 ← [τ ]Pl − Pl

6: Q← Q+ S
7: end for

8: return (Q).

Therefore, max(bi) should be limited when the two dimensional
Frobenius expansion is computed.

Finding an algorithm that returns a fairly short representation
of k as the sum of {τ, τ − 1}-Kleinian integers is an absolute
need. The greedy algorithm given in [5] is used to obtain such
a representation. Greedy algorithm does not always return the
canonical {τ, τ − 1}-expansion. Note that the complexity of the
greedy algorithm depends crucially on the time spent to find the
closest {τ, τ−1}-Kleinian integer to the current Kleinian integer.

However, finding the closest Kleinian integer in an interme-
diate step of greedy algorithm is achieved by precomputing
all Kleinian integers ±τx(τ − 1)y for x, y ∈ Z

∗ less than cer-
tain bounds and using an exhaustive search. Using divide-and-
conquer principle, Dimitrov et al. have invented an effective
method to generate an efficient two dimensional Frobenius ex-
pansion for computing single scalar multiplication [5]. Further
they have conjectured following:

Conjecture 1 Length of Two Dimensional Frobenius Expan-
sion Every Kleinian integer ξ = a + bτ , can be represented as
the sum of at most O (logN(ξ)/ log logN(ξ)) {τ, τ−1}-Kleinian
integers, where N(ξ) = (a+ bτ )(a+ bτ) is the norm of ξ.

They highlighted that use of two complex bases has increased
the theoretical difficulties in proving the Conjecture 1. Neverthe-
less, that lead to a more important practical blocking algorithm
given in [5].

3 Joint Blocking Algorithm

In this section, we present the construction of our new algorithm
to return a joint and sparse representations for a pair of Kleinian
integers η0, η1 ∈ Z[τ ]. Algorithm 2 illustrates the procedure to
compute a joint two dimensional Frobenius expansion in Z[τ ] for
a pair of Kleinian integers.

A window size w is fixed prior to running the algorithm. Then
the optimal joint two dimensional Frobenius expansions for all
possible pairs of w-bit τ -adic representations are precomputed
and given as another input.

First, two τ -adic expansions
∑l−1

i=0 uiτ
i, where ui ∈ {0, 1} and

l is the length of the longer expansion, in Z[τ ] are computed.
Next both τ -adic expansions are arranged as in (6) to generate
joint columns.

(

η0
η1

)

=

(

η0,l−1 . . . η0,1 η0,0
η1,l−1 . . . η1,1 η1,0

)

(6)

Algorithm 2 Blocking Algorithm Computing Joint Two Di-
mensional Frobenius Expansion

Require: A pair of Kleinian integers η0, η1 ∈ Z[τ ], window size
w and precomputed table of optimal joint two dimensional
Frobenius expansions for all possible pairs of Kleinian inte-
gers

∑w−1
i=0 u0,iτ

i and
∑w−1

i=0 u1,iτ
i.

Ensure: A pair of lists L0, L1 of {τ, τ − 1}-Kleinian integers
representing (η0, η1).

1: for i = 0 to 1 do

2: Li ← ∅
3: compute τ -adic expansion ηi =

∑l

j=1 ηi,jτ
j , where ηi,j ∈

{0, 1}
4: end for

5: for i = 0 to ⌊l/w⌋ do
6: find optimal joint two dimensional Frobenius expansion of

pair of
∑w−1

j=0 u0,j+iwτ
j and

∑w−1
j=0 u1,j+iwτ

j

7: multiply each term by τ iw and add to L0 or L1

8: i← i+ 1
9: end for

10: return (L0, L1).

The ith joint column in (6) has two elements η0,i, η1,i ∈ {0, 1} for
all i satisfying 0 ≤ i < l. If one τ -adic expansion is shorter than
the other, then the coefficients of higher degrees of τ of shorter
expansion should be set to zero.

Two τ -adic expansions are separated into w-bit ⌈l/w⌉ number
of blocks. The least significant w bits of τ -adic expansion have
the label block 0, while the most significant bits have label block
⌊l/w⌋.

At step 6 of Algorithm 2, ith block of η0 and η1 representations
are considered to find the ith block of optimal joint two dimen-
sional Frobenius expansion. This is achieved by a look-up-table
approach. Once the ith block of optimal joint two dimensional
Frobenius expansion is obtained, all elements are multiplied by
τ iw and appended to the relevant lists. We repeat this step
for ⌈l/w⌉-times to obtain the complete joint two dimensional
Frobenius expansion. Example 3 illustrates the execution of Al-
gorithm 2.

Example 1 Joint Two Dimensional Frobenius Expansion We
consider two Kleinian integers η0 = −5−18τ and η1 = −21+5τ
with a = 1 in this example. As the first step we compute τ -adic
expansions for both η0 and η1 (Step 3 of Algorithm 2):

−5− 18τ = ( 1 1 0 1 0 1 1 0 1 1 )τ
−21 + 5τ = ( 1 1 1 0 1 1 0 0 1 )τ

To construct the joint expansion we need to make both expansions
in the same length. Therefore we append a zero to the beginning
of the τ -adic representation of −21 + 5τ :

−21 + 5τ = ( 0 1 1 1 0 1 1 0 0 1 )τ

Let w = 5. We divide both τ -adic expansions into 5-bit blocks
and find the optimal joint two dimensional Frobenius expansion
for each block. The pair 11011τ and 11001τ have −(τ − 1)4 and
−τ − (τ − 1)4. Most significant bits pair have τ 3+ τ (τ − 1)2 and
τ 3− τ (τ − 1)2 (Step 6 of Algorithm 2). We multiply last pair by
τ 5 to obtain final results (Step 7 of Algorithm 2). The optimal
joint two dimensional Frobenius expansion is given by:

(

−5− 18τ
−21 + 5τ

)

=

(

τ 8 + τ 6(τ − 1)2 − (τ − 1)4

τ 8 − τ 6(τ − 1)2 − τ − (τ − 1)4

)

J2DFE
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The main advantage of a joint representation in double scalar
multiplication in elliptic curve cryptography is that Straus’
method can be applied with some precomputations to improve
the efficiency [6]. Considering Example 3, if A = P + Q and
S = P − Q are precomputed, we can compute [−5 − 18τ ]P +
[−21 + 5τ ]Q with four point additions. We do not consider any
additions due to (τ − 1) terms in the total cost.

[−5− 18τ ]P + [−21 + 5τ ]Q = [τ 8]A+ [τ 6(τ − 1)2]S

− [τ ]Q− [(τ − 1)4]A (7)

Then we can apply Algorithm 1 to compute final point with (7).
The point negations over Koblitz curves is only a field addi-
tion and can be neglected in terms of cost compared to field
multiplication. Fig. 1 illustrates the graphical representation of
joint two dimensional Frobenius expansion of η0 = −5−18τ and
η1 = −21 + 5τ .

The generation of precomputed optimal joint representations
for all possible combinations of pairs of Kleinian integers for
a given window w is achieved by an exhaustive search. This
computation needs to be done only once per curve and a given
window size.

4 Hardware Implementation and Results

The double scalar multiplication over F2163 with joint two dimen-
sional Frobenius expansion is implemented in VHDL and placed
and routed to Xilinx XC4VLX200 FPGA by executing Xilinx In-
tegrated Software Environment (ISETM) version 9.2i. The win-
dow size is set to w = 5 and maximum exponent of τ−1 is limited
to four. We describe the hardware architecture of our circuit in
this section. The top-level design components and architecture
of the circuit are illustrated in Fig. 2.

The circuit is partitioned into four high-level components,
namely, main controller (MC), binary arithmetic processor
(BAP), integer-to-τ converter (ITC) and registers. In our im-
plementation, databus width is set to 163 bits. Other than u0

and u1, inputs and outputs of main controller are handshaking
signals between MC and other units.

The binary arithmetic processor performs four basic arith-
metic operations needed for point multiplication, namely, addi-
tion, squaring, multiplication and inversion. All arithmetic op-
erations are performed in the normal basis representation. Addi-
tion and squaring can be executed in a single clock cycle. Addi-
tion is an exclusive OR (XOR) operation and squaring is a cyclic
shift operation in the normal basis representation [9]. Multipli-
cation is a direct implementation of Massey-Omura multiplier
with computing four bits in one clock cycle [10]. Therefore we
need only forty one clock cycles for the multiplication. The in-
version is performed with Itoh-Tsuji architecture [11]. It needs
nine multiplications to calculate the inversion of an element in
F2163 . Once the multiplication or inversion is performed, binary
arithmetic processor sends out a job completion signal by setting
DONE of BAP to high.

The primary job of the integer-to-τ converter is to compute
the joint two dimensional Frobenius expansion from a pair of
integers. Our implementation comprises of two integer-to-τ con-
verters with lazy reduction introduced in [8], because it is faster
and needs less area in hardware implementations. The converter
is slightly modified to generate nonnegative elements for the τ -
adic expansion, whereas the circuit proposed in [8] generates the
τNAF. Then a precomputed look-up-table is used to compute

joint two dimensional Frobenius expansion. The signal DONE
of ITC is high when first w bits of each expansion is available
for processing.

The registers are used to store point coordinates and interme-
diate values during point additions. Further some registers can
perform cyclic shift operation to facilitate Frobenius mapping
on points P , Q, P +Q, and P −Q.

The main controller is designed with a finite state machine to
perform the double scalar multiplication with other three com-
ponents. With the INIT of MC set to high, main controller
begins loading integers k0, k1 and P , Q point coordinates xP ,
yP , xQ, yQ to registers. Then k0 and k1 are loaded into the
integer-to-τ converter simultaneously. Once DONE of ITC is
high, the joint two dimensional Frobenius expansion is read to
main controller and the double scalar multiplication is started.
The main controller knows that it has reached to the end of
computation, when the TOP of ITC is high. Final results are
stored in the registers and DONE of MC is set to high.

Affine coordinates are used in precomputations. Mixed co-
ordinates are used for computing P and Q related calculations
and needs 8 field multiplications and 5 field squarings. For other
point additions, i.e. P ± Q related computations we have used
López-Dahab projective coordinates in this implementation [12].
These point additions require 13 field multiplications and 4 field
squarings.

The hardware implementations are carried out for both τ -adic
joint sparse form and joint two dimensional Frobenius expansion
based double scalar multiplication. A window value w = 5 and
maximum τ − 1 exponent max(bi) = 4 are selected for the joint
two dimensional Frobenius expansion implementation. The y2+
xy = x3 + x + 1 is considered over binary field F2163 . We have
considered the curve parameters and field for implementation
which are specified by NIST. We have implemented both circuits
in Xilinx XC4VLX200 FPGA and tested for 10,000 pair of integers,
k, l and pair of points, P , Q. The summary of the experimental
results are given in Table 1.

The results collected in Table 1 are based on the synthesis
goals set for speed maximization. Time is read for each algo-
rithm when the circuit is operating at its maximum frequency.

Note: Timings given for single scalar multiplication in [5] are
very smaller than the figures for double scalar multiplication pre-
sented in this paper. That is mainly due to three reasons: Firstly,
the clock speed in [5] is two times as fast as that of this implemen-
tation. Secondly, average number of point additions in double
scalar multiplication is more than twice of that in single scalar
multiplication. Thirdly, field multiplication in [5] needs 9 clock
cycles, while in this implementation we need 41 clock cycles.

5 Conclusions

The joint two dimensional Frobenius expansion outperforms the
state-of-the-art τ -adic joint sparse form in double scalar mul-
tiplication over Koblitz curves, in speed, according to the ex-
perimental results presented in Table 1. The area of the new
architecture has increased by about 45% of that of τJSF archi-
tecture. Having greater values for window sizes and maximum
τ − 1 exponents, the speed of the double scalar multiplication
can be improved. When the window size is increased the size
of look-up-table in integer-to-τ conversion grows exponentially.
We will investigate on different combinations of w and maximum
τ − 1 exponent as future work.
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Figure 1: Graphical Representation of Joint Two Dimensional Frobenius Expansion of η0 = −5− 18τ and η1 = −21 + 5τ
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Figure 2: Top-Level Components of Circuit for Double Scalar Multiplication with Joint Two Dimensional Frobenius Expansion

Table 1: Experimental Results for τJSF and J2DFE based double scalar multiplication over F2163

Max. Area Increase Av. time Gain in

Algo. Freq. (Num. of in area per calc. time

(MHz) slices) (%)a (µs) (%)b

τJSF 75.364 9,217 - 479.609 -

J2DFE 76.559 13,403 45.42 418.675 12.70

(a) Increase in area is given against τJSF.
(b) Gain in time is given against τJSF.
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