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Abstract— We present a reconfigurable acquisition and
wavelet-based detection circuit, NeuroBetaMed, for in vitro bi-
ological signals. It is implemented on a configurable digital
integrated circuit (FPGA). We consider real-time computing as
a hard specification and silicon area as a price to pay. It is
designed for noisy signals like those recorded from in vitro
cellular preparations, by extracellular electrodes. NeuroBetaMed
performs biological signal acquisition, stationary wavelet trans-
form (SWT) and adaptive thresholding to detect action potentials
(APs). Initially developed to detect pancreatic islet cells action
potentials, this system is also suitable for neural signals.

I. INTRODUCTION

Analyzing and understanding electrical signals in human
body is the ultimate goal of many scientists in the field of
bioscience. This work proposes insights on analyzing tools
for better decoding cortical or pancreatic islet cells signals.
Deciphering communication between neurons and networks
is for example mandatory to make prosthesis intended to
overcome handicaps such as blindness or lesion in the spinal
cord. The electrical activity of pancreatic islet cells relates
nutrient (e.g. glucose) and hormone (e.g. incretins) blood
concentrations to insulin secretion. Decoding the activity of
these cells may be an approach to control insulin delivery
in certain types of diabetes [10]. For such applications, real-
time processing of bio-signals is required. The implementation
proposed here fits hard real-time constraints, meaning that
processing induced by an incoming sample is finished before
the next sample arrives.

A classical initial step for biosignals decoding is the identifi-
cation of action potentials (APs), as elements of the electrical
influx exchange between cells (neurons or pancreatic islet
cells). An AP is a pulse in the membrane voltage of an
excitable biological cell after a membrane depolarization, in
response to a stimulation.

Automatic biopotential detectors have been proposed for real-
time detection ([2] and [3]). The most intuitive method to
extract APs is to compare the raw signal with a threshold.
This threshold is related to the signal amplitude and can
adapt to changes in environmental conditions. This method,
hereafter called raw thresholding, is only efficient when APs
have significantly higher amplitude than noise. However for
long term or large scale acquisitions that require extracellular
electrodes (usually arranged in matrices), the low signal to
noise ratio (SNR) makes raw thresholding inefficient. Alter-
natively a pre-processor may be used which amplifies AP
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shapes and attenuates out-of-band noise before signal compar-
ison. Pre-processing methods for spikes detection have been
described (Teager Energy Operator, Normalized Cumulative
Energy Difference, Phase-Space, Summation, Convolution-
based template matching) [6] and [7]. However, these methods
are not efficient for signals with an SNR below 5. This jus-
tifies investigations on alternative spike detection techniques
dedicated to low SNR signals.

The wavelet transform was considered only recently as a
relevant pre-processing method in the context of neural sig-
nal processing. It has been successfully used in biomedical
applications [4] and [5]. This method is interesting due to
its performance in terms of compression and time-frequency
localization for feature extraction. Some wavelet-based meth-
ods were already successfully implemented for off-line neural
processing [9]. Wavelet transform detection methods were
tested only with simulated or pre-recorded neural signals, for
specific spike shapes. Some were implemented in software
with no real-time computation perspective.

We propose in this paper a new method based on wavelet
transform that performs adaptive AP detection on in vitro
neural and pancreatic islet cells signal in real-time. We present
the architecture of the system implementing that method.
We also illustrate our technique with experiments performed
online with in vitro pancreatic islet cells. Moreover, we will
detail its performance in terms of detection.

II. WAVELET TRANSFORM ALGORITHM

Our strategy for real-time AP detection is to implement
a pre-processor which emphasizes APs shapes and attenu-
ates out-of-band noise. The output of this pre-processor is
compared to a threshold to discriminate AP events. The pre-
processing algorithm is the Stationary Wavelet Transform
(SWT). The detection system computes in real-time the SWT,
the adaptive threshold and the comparison. We evaluated Sta-
tionary Wavelet Transform (SWT) to be the best compromise
to optimize AP detection rate and time computation cost
[11]. SWT is a time-frequency analysis, based on filter bank
decomposition (fig.1) on an orthogonal basis, performed by the
convolution of an input signal x[n] and two filters (G and H).
These filters define the mother wavelet. Some parameters are
closely related: the shape of the detected signal and the mother
wavelet on one hand, the sampling frequency, the duration of
the detected signal and the focused detail level on the other
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Fig. 1. a) Two-level SWT filter bank implementation. x[n]: input signal, b)
Low-pass (H) and high-pass filters (G) up-sampling coefficients. j: wavelet
decomposition level.
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Fig. 2. FPGA block diagram.

hand. Concerning mother wavelets, we can find in the literature
several examples particularly performing when dealing with
APs (Haar, Daubechies, B-spline [1]).

III. SYSTEM ARCHITECTURE

We implemented a NeuroBetaMed prototype on a FPGA
using the Xilinx Spartan-3A starter kit. It performs acquisition
and wavelet-based AP detection on one input signal. Our goal
is to validate real-time performance on a single channel before
considering multi-channels processing adapted for example to
recordings from multi-electrode arrays. Fig.2 represents the
device architecture. Data processing is controlled by a 8-bit
RISC microprocessor (uP). It controls computation modules
(SWT computation, threshold computation), manages incom-
ing samples from an analog-to-digital converter (ADC), and
performs a UART interface to update the detection parameters
and retrieve results. Detection outputs are both sent through
FPGA 1/Os for real-time display and read by the processor for
statistical analysis.

A. Biological signal acquisition block

Mouse pancreatic islet cells were cultured on a commercial
microelectrode array (MEA) from Multi Channel Systems
(MCS). MEAs contain plates to record electrical signal and
provide 60 analog read-out channels. The MCS acquisition

set-up includes an integrated pre-amplifier with x1000 gain.
After a basic signal conditioning due to the ADC (signal
amplification with a variable gain and 1.25V offset), we use
the onboard FPGA 12bits ADC to sample the chosen channel
at 10 kHz (x[n]). Once the uP retrieves a sample, it converts
it into a 16 bits fixed point value and sends it to the SWT
pre-processor. We use the direct implementation of SWT [1].
Detail and approximation outputs @’ and a’ from level j (fig.1)
in direct SWT computation are given by equation 1 and 2.

&) = 3o ¢ [k x @/ [n — k] (D

2

where j represents the SWT level (up to 6), k the number of
mother wavelet coefficient (up to 8) and n the sample number.
hJ and ¢’ are low-pass and high-pass filter at level j. So a
SWT computation for a sample at one level necessitates at
most 16 multiplications and 14 additions. We use a pipelined
architecture (fig.3) that only requires 1 multiplier and 1 adder.
Samples and coefficients are stored in two different memories
so two reading process are possible at the same time (at
the first pipeline stage). The second pipeline stage performs
the multiplication, and the last one performs the addition.
To simplify the control state machine, we chose to compute
8 additions with a zeroed accumulator, instead of 7 with a
random initial accumulator value. The result of the last addi-
tion is directly written in RAM. Each filter level requires 10
clock cycles. This represent 0.2us, as our FPGA is clocked at
50MHz.To keep this time, we also restrained from computing
unnecessary levels of details. In terms of computation time,
between the arrival of a sample and the computation of the
6th wavelet detail level (maximum computation), our system
requires 1.4us. Considering a 10kHz sampled signal, we can
use a single SWT pre-processor to compute up to 70 channels
using time multiplexing.

alfn] = Yo W[k] % a? 7 n — k]

B. Adaptive threshold detection block

The SWT module provides the first level d' and the most
effective detail level (d*) used for threshold application in AP
detection. We dynamically estimate the standard deviation (o)
of the first detail level d'; d' is computed from the raw input
signal by applying a SWT high-pass filter. We use a feedback
loop to perform o computation. This loop checks the ratio of
samples above the current ¢ and compares it to a reference
value (P). When the loop is stabilized the estimation of o is
correct [3]. Within the loop, the signal and its estimated o are
compared by the comparator A. The output of A is a binary
pulsatile signal, which mean value is a linear representation
of the ratio of samples above the estimated o. A low-pass
filter (F1) extracts this mean value with a gain of Gl. The
difference between this value and a reference P is fed back to
the comparator A. This signal is the estimation of the input
data standard deviation o. The user must set the reference P
depending on the approximate distribution of the processed
signal. For a white Gaussian noise signal, the probability of a
sample absolute value to be over o is 0.159. In that case the
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reference in the control loop is set to 0.159. Finally, after a
low-pass filter (F2) that stabilizes its value, the threshold T is
calculated as shown in equation (3), where G2 gain is in the
range of 0 and 3.

T=G2xo0o 3)

The transfer function of the digital low-pass filters F1 and F2
is:

H(z) = K x 3= )
H is a Butterworth low-pass filter which cut-off frequency is
10Hz and sampling frequency is 10kHz. Due to the hardware
implementation, we encode H parameters in fixed-point 16 bits
format. K=0.003, w.=1 and w,=-0.99. Six wavelet detail level
are at the disposition of the user in order to apply the threshold
(levels 1 to 6). An AP is detected if the absolute value of
the most efficient detail level chosen by the user is above T.
A block diagram of the entire wavelet detection module is
presented in fig.4.

TABLE I
FPGA LOGIC UTILIZATION

Logic utilization Total used nP SWT | Thresholding
Flip Flop 1238 619 136 483
4 input LUT 2081 1040 520 521
Multiplier 4 0 1 3
RAM/ROM(kbits) 22.722 14.3 8.5 0
Maximum frequency
83.362 - - -
(MHz)
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» g Recordin
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Fig. 5. Acquisition and AP detection experiment configuration.

IV. RESULTS
A. Implementation results

We implemented the acquisition and detection system in a
FPGA from Xilinx (Spartan-3A XC3S700A) using the ISE
tool chain. The whole system is clocked at SOMHz. To store
the set of samples necessary for computing the 5 approxima-
tion levels, we use a (512x16)bits RAM block. We use two
other RAMs (8x16)bits to store mother wavelet coefficients.
In terms of device utilization, table I summarizes the FPGA
post-synthesis area cost for NeuroBetaMed blocks. The critical
resource in our application is the RAM, mostly used by the
SWT pre-processor. Indeed, contrary to the pP which can
be considered to have fixed cost, SWT RAM size is directly
related to the number of processed channels: for n channels,
the necessary SWT RAM size is 0.25+n*8 kbits. For signals
that require a lower SWT detail level, RAM usage may be
reduced to 0.25+n kbits. SWT RAM usage can also be reduced
by using a lower sampling frequency. We did not investigate
this yet, as hardware anti-aliasing filters in the MCS set-up
cannot be reconfigured and consequently bound the sampling
frequency.

B. Acquisition results

Our acquisition and wavelet detection system was used on
in vitro recording of pancreatic islet cell culture. We used si-
multaneously a reference commercial acquisition system from
MCS, as represented in fig.5. The MCS software acquisition
software is commonly used by biologists for AP detection. In
fig.6, we plot the variations of the adaptive threshold signal,
for a MEA signal with a high SNR (SNR>5), recorded on
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pancreatic islets. The FPGA system requires 30 ms to set
the threshold due to the time constant present in filter F1
(see fig.4). After 30ms the threshold can be considered to
follow equ.3. In fig.7.A, a recorded raw pancreatic islet cells
signal is given. Note that field potentials were recorded and
signals have downward deflection. 9 spikes above +/-30mV
were identified and marked by arrows. In order to evaluate
our circuit’s performance in terms of AP detection at low
SNR, we added to the original signal a gaussian noise as
explained in [8] and obtain pancreatic islet cells signal with
added noise (fig.7.B). This signal is then applied in real time
to our circuit by a signal wave generator (Agilent 33250A), so
the detection is made from the signal shown in figure (fig.7.B).
The sixth wavelet detail level and the detection circuit outputs
are represented (fig.7.C and D). The detection output shows
that, out of 9 APs, 7 were correctly detected and 1 false
positive (circle in fig.7.D) is present with our circuit although
visual detection of these APs in fig.7.B is almost impossible.
This example, is typical of good detection scores we obtain
on equivalent MEA signals, and shows the good AP detection
rate of our circuit in low SNR conditions.

V. CONCLUSION

We present in this paper a new integrated acquisition and
detection system, NeuroBetaMed, based on Stationary Wavelet
Transform. It provides embedded on-line processing of in vitro
signals. Good performance in AP detection were obtained
on pancreatic islet cells cultures which SNR is particularly
low. Thanks to its re-configurability, this system can be easily
ported to other types of biological signals, like neural signals,
with a low computational cost. NeuroBetaMed will be soon
tested on ex vitro preparations of spinal cords. We presented
a FPGA implementation flow and experimental results for a
single processing channel; this concept will be extended to 60
channels processing. We expect that system to provide novel
integrated processing solutions for embedded Brain Machine
Interfaces that require optimized integration density and real-
time data analysis.
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