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Abstract—Stochastic resonance is a general phenomenon by 

which the sensitivity of a system to small inputs may be 

increased by the addition of noise. In this paper, we show that a 

neuro-inspired analog circuit naturally exhibits stochastic 

resonance. Transient circuit simulations allow the recognition of 

the evidence of this phenomenon. Detailed analyses show the 

importance of well choosing a specific neuronal parameter, the 

refractory period, so that the resonance can be used in practice. 

These results open the way for neuromorphic designs to process 

noisy data without signal processing, or to work in extremely 

noisy environments.  
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I. INTRODUCTION 

Noise and unpredictability are becoming central issues in 
electronics circuits and systems research. Many modern 
applications of electronics (biological, medical or ubiquitous 
sensing applications) have to process naturally noisy 
information from the real world, using a low power budget. 
Furthermore, microelectronics technology itself becomes 
noisier in advanced technologies [1]. This should be even 
more crucial if the channel material in CMOS switches to 
nanostructures like silicon nanowires, which exhibit high 
noise [2]. A higher noise tolerance could also allow reducing 
supply voltage, thus leading to power savings. 

Electronic circuits that work like the brain  with 
asynchronous spikes – neuromorphic circuits – have been 
developed since the late 80s [3], [4] and are known to operate 
well with real life natural data [5], [6]. It it thus natural to 
assess their potential for working in extremely noisy 
environments. This is all the more significant since it has been 
shown in Neuroscience works that biological neurons have 
extreme noise tolerance. They may even in some instances 
benefit from noise, exploiting an apparently paradoxical 
phenomenon known as stochastic resonance. This has been 
observed theoretically [7] and experimentally [8]. 

Stochastic resonance was originally introduced in the 80s 
to explain climatologic cycles, and has been observed in 
various physical and biological systems [9], [10], and largely 
theorized [11]. It states that, in some situations, the response 

of a system to a small stimulus may be improved by noise, and 
that a noise optimum may exist. The goal of this paper is to 
analyze if a CMOS-based neuromorphic neuron can express 
stochastic resonance, and to analyze its behavior. For this 
purpose, we perform transient circuit simulations. 

The idea of getting an electronic system to express 
stochastic resonance has previously been proposed using 
nanoelectronics devices: carbon nanotubes [12], single 
electron devices [13] and tunnel diodes with negative 
differential resistance [14–16]. It has also been proposed in 
bistable CMOS circuits [17], [18], which implement the 
traditional equations of stochastic resonance. 

In this work, we propose to use a spiking neuromorphic 
CMOS circuit that can be fabricated with current commercial 
technologies. Unlike the previous proposals of stochastic 
resonant circuits, this kind of spiking design is developed 
widely and has been proven to scale to large systems [19–23]. 
Exploiting stochastic resonance could be a significant advance 
for this kind of circuits. 

The paper is organized as follows. First, we introduce the 
circuit and its simulation methodology. Second, we present 
our results and identify the stochastic resonance. Third, we 
discuss its meaning and significance. 

II. CIRCUIT AND METHODS 

The circuit is the log-domain current-mode generalized 
integrate-and-fire neuron from [3], and presented in Figure 1. 
We stripped it from the adaptation sub-circuit, which was not 
necessary for this work. As many neuromorphic circuits [22], 
the circuit uses transistors operating in the subthreshold 
regime, and exploits the exponential dependence of current to 
gate voltage. As an output, it generates digital asynchronous 
spikes, which can be routed to other neurons, synapses or 
generic digital circuits. The neuron works in real time 
(meaning, with time scales similar to the ones of biological 
neurons), which makes it appropriate to process real world 
dynamic data in real time. 



 
Figure 1.  Neurons circuit used in this work (based on [3]) 

The circuit is built around a low pass filter block [24]. The 
input is applied as a voltage on the gate of a PMOS transistor. 
Another block implements a positive feedback. When Cmem is 
charged enough, the positive feedback becomes dominant, 
which leads to the switch of the digital transistors: the neuron 
spikes (or “fires”). After the neuron has spiked, the refractory 
period block keeps Cmem discharged for a given duration, 
preventing the neuron from firing again. The refractory period 
duration is controlled directly by the Vref bias and the Cref 
capacitance value. All details and theory about the circuit are 
given in [3]. 

The input was a sine function (at 10 Hz in most of the 
paper). In all simulations, the amplitude of the input is small 
enough, so that when no noise is present, the neuron does not 
spike. Any spike is thus caused by noise. 

Noise was introduced in the circuit with an artificial 
voltage noise source in series with the input. This noise source 
was a custom device programmed in the Verilog-A language, 
and generated white noise. 

To design the circuit, we used the design kit of a 65 nm 
Low Power technology from a commercial vendor. The 
analog transistors were implemented with the I/O transistors 
of the technology (regular transistors had too high leakage for 
an operation of the circuit in biological real time). The two 
capacitors Cmem and Cref were also implemented with I/O 
transistors. 

The circuit was simulated with Cadence Spectre, in 
transient noise simulation, with various biases and Cmem and 
Cref capacitance values. Considering the low currents, and the 
permanent discontinuities introduced by noise, simulations 
required extremely strict tolerance criteria (vtol, itol, reltol, 
gmin) to ensure a reliable result. Simulation convergence was 
thus extremely slow, in comparison with traditional transient 
simulation of analog circuits. To initiate the circuit properly, 
the leakage bias Vleak was originally set at 0 volts and then 
rapidly increased to its final value. 

 
Figure 2.  For different noise levels, input voltage Vinput (black), small AC 

input without the noise (light blue), membrane current Imem (grey).  Neurons 
spikes are materialized by the vertical blue lines on the time axis. (a) No 

input noise (b) 0.04 V²/kHz (c) 0.1 V²/kHz  (d) 0.6 V²/kHz  

The circuit was simulated during 20 s of circuit time 
(which is 200 periods of the input’s sine function). Controls 
with up to 200 s of circuit time showed that the spectral 
analyses in this paper were not affected. Simulation time for 
20 s of circuit time on a Xeon E5-1650 CPU reached several 
hours for the simulations with the highest noise. 
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Output waveforms of the circuit were exported and signal 
processed in the Mathworks MATLAB software. A binary 
signal was first generated, which reproduced the spikes 
generated by the circuit: it is 1 when the neuron declares a 
spike, and 0 the rest of the time. We performed FFT on this 
binary signal, and not on an actual voltage waveform from the 
circuit. That way, subthreshold oscillations of the circuits 
cannot affect the FFT, and any spectral feature is really on the 
spiking pattern of the neuron. 

 
Figure 3.  (a) FFT (b) Histogram of interspike intervals (both correspond to 

the case of Figure 2(c), input noise of 0.1 V²/kHz). 

 

III. RESULTS 

Figure 2 presents the behavior of the circuit, as simulated 
with different noise level. We plot the input voltage with noise 
(superimposed with the input voltage without noise to guide 
the eye), as well as the “membrane current” Imem, which 
represents the internal state of the neuron. We materialize the 
neuron’s spike by a thick vertical blue line on the time axis. 

When there is no added noise (Figure 2(a)), the membrane 
current Imem oscillates, but the positive feedback is never 
sufficient to generate a spike: the neuron has no answer. When 
there is moderate noise (Figure 2(b), 0.04 V²/kHz), the 
membrane currents appears noisy and the positive feedback 
can sometimes be sufficient to generate spikes. These remain 
rare and seem random. Where there is higher noise (Figure 
2(c), 0.1 V²/kHz), the behavior looks very different. A spike is 
generated almost every period of the AC input. Two spikes are 
never generated during the same AC input period. Basically, 
the neurons spikes in phase with the input, missing a period 
occasionally. It should be noted that, in this regime, there is so 
much noise that the sine function cannot be perceived in the 

input voltage. When there is even higher noise (Figure 2(d), 
0.6 V²/kHz), the neuron spikes frequently and erratically. 

If we perform FFT on the firing pattern, we get a spectrum 
as in Figure 3(a) (which corresponds to the signal of Figure 
2(c)). A clear peak is seen at 10 Hz, the frequency of the sine 
function in the input voltage. We define the signal-to-noise 
ratio of the spiking output as the ratio of the height of this 
peak to the average level of the FFT on the 1-100 Hz range 
(excluding the peak). If we plot the signal-to-noise ratio as a 
function of the input noise levels, a bell curve is seen (Figure 
4, full line “Vref = 0.20 V”). For zero noise, there is no signal 
since the neuron is not answering. For high noise, the peak is 
decreasing (the neuron starts to spike randomly). A maximum 
is existing in-between. This kind of bell curve is a signature of 
the stochastic resonance phenomenon [11]. 

Similarly, in Fig 3(b), we plot a histogram of interspike 
interval in the situation of Fig 2(c). We see that the most likely 
interspike intervals are around the input’s sine function period 
(0.1s). Interspike intervals around twice and three times this 
period also occur, and correspond to the situation where the 
neuron missed an input’s period. This kind of inter-event 
intervals curve is also a signature of stochastic resonance [11]. 

The results presented in Figures 2 and 3 are presented with 
an input’s frequency of 10 Hz. A similar bell curve and similar 
interspike interval histograms were obtained for input 
frequencies from 4 to 25 Hz, without changing any bias or 
capacitance in the circuit. 

 
Figure 4.  Height of the spectral peak at 10 Hz in the FFT, as a function of 

noise level, for different refractory periods. 

IV. DISCUSSION 

Interestingly, stochastic resonance was easily obtained 
whatever the values of most of the biases and of the capacitors 
in the neuron’s circuit. In particular it is obtained whatever the 
time constant of the low pass filter (which is determined by 
capacitance Cmem and bias Vleak [3]), and the values of Vthresh 

(provided they do not impair the circuit’s basic functionality). 

However, we found that the parameters regarding the 
refractory period played a more important role. The refractory 
period is the time during which a neuron is prevented from 
firing after it has fired. It is determined by the capacitor Cref 
and the bias Vref in the circuit. The refractory period has a 
linear dependence with Cref and an exponential dependence 
with Vref. [3]. This is well seen in Figure 4. 
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For short refractory period (e.g. Vref = 0.30 V), the neurons 
may spike multiple times by input period. A nice bell curve is 
not seen, and the interspike interval histogram is broad and 
does not show peaks around 0.1 s and 0.2 s like in Fig. 3(b). 
For long refractory period (e.g. Vref = 0.15 V) the neurons 
rarely spike, since the refractory period is longer than one 
input’s threshold. In both of these situations, the firing pattern 
of the neuron does not follow the input’s periods and 
stochastic resonance cannot be useful. Real stochastic 
resonance, characterized by interspike interval histogram 
similar to Fig. 3b, is observed on a 60 mV range of Vref (0.18-
0.24 V), which corresponds approximately to a factor five on 
the refractory period. 

V. CONCLUSION 

In this work, we have observed by circuit simulation that a 
neuromorphic neuron circuit could naturally exhibit stochastic 
resonance. The methodology consisted in applying a small 
sine input (which would trigger no spike in the neuron without 
noise), embedded in noise to the neuron. When noise is 
present, the neuron spikes, and the spiking response shows a 
spectral response at the input’s frequency. This response has a 
maximum for a given range of noise: the stochastic resonance. 
The maximum resonance is not sharp. When at this maximum, 
if the refractory period is appropriate, the neuron spikes in 
phase with the input (sometimes missing a period). This 
means that it turned the input, a sine function embedded in 
noise, into a regular spiking pattern, which may be exploited 
by other neuromorphic circuits directly. 

Exploiting this idea could allow neuromorphic circuits to 
work with weak and extremely noisy signals, for example 
coming from inexpensive sensors, and to develop new 
concepts and model of computation. Future work should focus 
on demonstrating functions associating several neurons with 
the stochastic resonance property. 
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