
FPGA Implementation of the CAR Model of the 
Cochlea 

Chetan Singh Thakur, Tara Julia Hamilton, Jonathan Tapson and André van Schaik 

The MARCS Institute, University of Western Sydney, Kingswood 2751, NSW, Australia 
Email: C.SinghThakur@uws.edu.au, T.Hamilton@uws.edu.au, J.Tapson@uws.edu.au, 

A.vanSchaik@uws.edu.au 

Richard F. Lyon 
Google, Inc., Mountain View,  

CA 94043 USA  
Email: dicklyon@acm.org

Abstract—The front end of the human auditory system, the 
cochlea, converts sound signals from the outside world into 
neural impulses transmitted along the auditory pathway for 
further processing. The cochlea senses and separates sound in a 
nonlinear active fashion, exhibiting remarkable sensitivity and 
frequency discrimination. Although several electronic models of 
the cochlea have been proposed and implemented, none of these 
are able to reproduce all the characteristics of the cochlea, 
including large dynamic range, large gain and sharp tuning at 
low sound levels, and low gain and broad tuning at intense sound 
levels. Here, we implement the ‘Cascade of Asymmetric 
Resonators’ (CAR) model of the cochlea on an FPGA. CAR 
represents the basilar membrane filter in the ‘Cascade of 
Asymmetric Resonators with Fast-Acting Compression’ (CAR-
FAC) cochlear model. CAR-FAC is a neuromorphic model of 
hearing based on a pole-zero filter cascade model of auditory 
filtering. It uses simple nonlinear extensions of conventional 
digital filter stages that are well suited to FPGA implementations, 
so that we are able to implement up to 1224 cochlear sections on 
Virtex-6 FPGA to process sound data in real time. The FPGA 
implementation of the electronic cochlea described here may be 
used as a front-end sound analyser for various machine-hearing 
applications. 

I. INTRODUCTION  
The efficiency of the human auditory system in perceiving 

sound is superior to any machine hearing application. Its front 
end, the cochlea, is a complex three-dimensional fluid-filled 
structure that converts mechanical vibrations induced by an 
input sound signal into neuronal spikes on the auditory nerve 
[1]. For decades, efforts have been made to engineer a hearing 
machine that can emulate the function and efficiency of the 
cochlea and the human auditory system. Despite tremendous 
progress, the existing machine hearing applications are not 
capable of performing as well as their biological counterpart.  

In human hearing, sound is collected in the outer ear, 
vibrates the eardrum and is transmitted via the middle ear 
bones to deliver hydrodynamic waves through the oval window 
of the inner ear’s cochlea. These waves are coupled to 
mechanical vibrations of the basilar membrane (BM) in the 
fluid-filled cochlea. The stiffness of the BM declines with 
distance from the oval window, thus allowing it to act as a 
frequency spectrum analyser by vibrating at specific cochlear 
locations depending on the input frequency.  

 The motion of the BM is transduced by the inner hair cells 
into neural signals along the auditory nerve fibres. The cochlea 
thus exploits the physics of wave propagation through a non-
uniform medium and employs sophisticated neural machinery 
to achieve remarkable acoustic sensitivity, high frequency 
selectivity and nonlinear compression in processing sound 
signals [1].  

Several electronic models of the cochlea have been 
implemented in both digital and analogue VLSI technology 
since the first model was proposed by Lyon and Mead [2]. 
These models have found applications in audio signal 
processing systems for speech recognition, pitch detection and 
spatial localisation [3], [4]. However, the tremendous 
computational burden of the digital models limits their ability 
to run in real-time at low cost and low power. Some of these 
limitations have been addressed by using analogue VLSI 
models [5], [6]. Although analogue VLSI implementation 
offers the advantages of high speed and low power 
consumption, field programmable gate array (FPGA)-based 
models are superior in terms of shorter design and fabrication 
times, higher accuracy, and a simpler computer interface. With 
improvements in FPGA technology, it is now possible to 
develop large scale neuromorphic systems on a single FPGA 
chip [7]. 

In this paper, we describe an FPGA implementation of the 
‘Cascade of Asymmetric Resonators’ (CAR) model of the BM 
as a first step in implementing the ‘Cascade of Asymmetric 
Resonators with Fast-Acting Compression’ (CAR-FAC) model 
of the cochlea. CAR-FAC is a neuromorphic model of hearing 
that incorporates recent findings on cochlear wave mechanics 
[8]. The model employs a filter-cascade approach that closely 
mimics the way sound information propagates as travelling 
waves in the human cochlea. It runs fast as its computational 
load is equivalent to that of a second-order filter per output 
channel, and is an efficient alternative to the more conventional 
parallel filter bank approach [9]. To achieve accuracy similar to 
the human cochlea, which can detect frequencies in the range 
of 20 Hz to 20 kHz, a model requires a large number of filter 
channels. Here, we show that an electronic cochlea with 1224 
filter sections can be implemented on an FPGA (Virtex-6) to 
process real-time sound input, which is difficult to achieve at 
such a high resolution via software implementation. Our work 
demonstrates the capability of the CAR model to process sound 
at high resolution in real-time. The FPGA implementation of 
the electronic cochlea described here may be used as a front-
end sound analyser for various machine-hearing applications. 

This work has been supported by the Australian Research Council Grant 
DP0881219. 



II. OVERVIEW OF THE CAR-FAC MODEL OF THE 
COCHLEA 

 The CAR-FAC model is a dynamic digital version of the 
pole-zero filter cascade auditory filter model [10]. It closely 
approximates the physiological elements of the human cochlea 
(Fig. 1A) and mimics its qualitative behaviour. CAR-FAC 
comprises a cascade of asymmetric resonators (CAR) that 
models waves on the BM, inner and outer hair-cell (IHC and 
OHC) models, and a coupled automatic gain control (AGC) 
network that implements much of the compression part of the 
model. The OHCs provide dynamic nonlinearity or fast acting 
compression (FAC) in the CAR-FAC model. AGC functions as 
a feedback loop that controls the OHC. The IHCs connect the 
mechanical waves on the BM to neural signals on the auditory 
nerve. The IHC also plays a key role in the feedback loop that 
controls the adaptive gain and distortion in the mechanics. Fig. 
1B shows the connections between the various elements of the 
CAR-FAC model.  

The asymmetric resonators in the cascade of asymmetric 
resonators (CAR) are two-pole–two-zero filters. The number of 
filter sections and their coefficients are optimised to match a 
linearised model of the human cochlea. The pole frequencies 
are chosen to correspond to equal spacing along the place 
dimension of the cochlea, by using the Greenwood function for 
human cochlea [11]: 

f = 165.4(102.1x – 1)                       (1) 

where, x is normalised with respect to the length of the cochlea 
and varies from 0 at the apex to 1 at the basal end. Fig. 2 shows 
one such filter section, where a0 and c0 are functions of 
position, x, along the cochlea. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Biquadratic filter in the CAR model. X is the input signal, Y 
is the output signal, and W1 and W2 are internal state variables. 
 

The a0 and c0 parameters represent the analogue pole 
position in the zero-damping case. An explicit parameter ‘r’ 
can be used to dynamically vary the pole and zero radius in the 
z plane (to vary the damping factor). ‘r’ is controlled by OHC 
to control the gain.  

a0 = cos(θR) = a/r                   (2a) 

c0 = sin(θR) = c/r                             (2b) 

where, θR is the normalised pole ringing frequency in 
radians per sample, or pole angle in the z plane. Using these 
parameters, the transfer function is: 

Y/X = g[(z2  + (– 2a0 + hc0)rz + r2 )/(z2 – 2a0rz + r2)]      (3)             

The h coefficient controls how far the zeros are from the 
pole frequency, and the g coefficient is used to adjust the 
overall gain. As long as h is small enough that the zeros remain 
complex, the zeros will be at the same radius r as the poles. 
The condition for complex zeros becomes relevant for high-
frequency channels, where cos θR < 0. In that case: 

h < [(2 + 2a0)/c0]                          (4) 

To get unity gain at DC, we can solve for g: 

g = [(1 – 2a0 r + r2 )/( 1 – (2a0 – hc0)r + r2)]       (5) 

The cascaded stages are combined to provide a family of 
filters at the output taps between the stages. The resulting 
filters may have high peak gains, depending on the stage 
damping parameters. 

 

 
Fig. 1. (A) Functional physiological elements of the 

cochlea. The sound stimuli induce mechanical vibrations on the 
basilar membrane (BM). The inner hair cells (IHCs) are the 
transducers that sense sound-generated motion of the BM and 
deliver neural signals to the auditory central nervous system 
(CNS). The gain is provided by outer hair cells (OHCs) that 
provide active undamping, and the degree of undamping is 
controlled by efferent connections. Adapted from [12]. (B) 
Architecture of the CAR-FAC model. The CAR-FAC model 
includes the cascade of asymmetric resonators (CAR) which are 
quasi-linear transfer functions H1 through HN that model BM 
motion. Fast-Acting Compression (FAC) is implemented by the 
OHC model integrated with the filter sections, and the coupled 
AGC (smoothing filters, SF) that controls the parameters of the 
filters via the OHCs. The IHCs introduce nonlinearity in the 
outputs of the CAR using sigmoidal or half-wave rectification 
function. The lateral interconnections of the smoothing filters 
allow a diffusion-like coupling across both space and time. 
Outputs from the CAR-FAC include BM motion (y1 through yN) 
and an estimate of average instantaneous rate on the auditory 
nerve, the neural activity pattern (r1 through rN). Adapted from 
[13]. 



 
 
 

Fig. 3. Simplified architecture of a CAR array, which implements 
100 filter sections with a CAR core using time multiplexing. 

 

III. DESIGN METHODOLOGY AND FPGA IMPLEMENTATION  
Here, we will describe the FPGA implementation of the 

cascade of asymmetric resonators (CAR) that represent the BM 
filter in the CAR-FAC model of the cochlea. Each filter section 
is a linear two-pole–two-zero filter, also known as biquadratic 
filter section, described by the transfer function in Eq. 3. The 
impulse response of each filter is governed by different 
coefficients. Each location in the cochlear model is tuned for a 
different frequency as determined using the Greenwood map 
(Eq. 1), ranging from the highest frequency of 20.657 kHz 
(corresponding to x = 1) to 20 Hz (corresponding to x = 0.023). 
Here, x varies from 0 to 1 from the apex of the cochlea to its 
basal end. The filter sections are cascaded from high to low 
resonant frequency similar to the BM. A sound input passes 
through the cascade of filter sections and excites a range of 
filters tuned near the corresponding frequency. 

A. Software Implementation 
First, we simulated a software floating-point 

implementation of CAR in Python. The coefficients a, c, h and 
g for each filter section were calculated using Eqs. 2a, 2b, 4 
and 5, respectively, with r chosen as a free parameter. Next, we 
adapted the Python code for fixed-point implementation, and 
determined the word length of the input, output and internal 
variables required for FPGA implementation without losing 
accuracy.  

B. FPGA Implementation 
Xilinx Virtex-6 (XC6VLX240T-1FF1156) FPGA was used 

to implement the CAR model. The sound input had a sample 
frequency of 48 kHz. Using a system clock frequency of 142 
MHz, one physical CAR section requires 29 system clock 
cycles to generate the output, resulting in a latency of 203 ns 
for a single section.  

 As shown in the block diagram in Fig. 3, there exists a 
global state machine which determines the filter section to be 
processed at a particular time and controls the coefficients and 
data for that section. In the CAR core block, there are two 
parallel state machines which control and calculate internal 
variables W1 and W2, which further calculate the transfer 
function (Eq. 3). For each sample, the global state machine 
keeps track of the filter section number and controls the data 
flow of the CAR core by passing the required input data for 
each filter section to the CAR core block, which then processes 
the sound sample. The coefficients a, c, g and h for each filter 
section were calculated externally, and uploaded into the 
FPGA from a file. The filters use a delay element (z-1 block in 
Fig. 2) that requires two internal variables, W1 and W2, to be 
stored for each filter section. After completion of the operation 
for one filter section, it asserts a ‘done’ signal and passes the 
output to the global state machine. All filter stages are 
cascaded, i.e., the output of one stage is input for the next 
stage. After completion of all filter stages, the global state 
machine asserts the ‘done_sample’ signal, which signifies that 
all the sections have been processed for a given input sample. 

 As the sound input data rate is 48 kHz (i.e., time period = 
20.8 μs), all filter sections need to finish their operation in less 
than 20.8 μs. Given a system clock frequency of 142 MHz, and 

the fact that each filter section requires 29 clock cycles, it is 
possible to implement 102 filter sections, henceforth termed a 
CAR array, using time multiplexing of a single hardware filter. 
Given the size of a Virtex-6 FPGA, we were able to implement 
12 CAR arrays for a total of 1224 cochlear sections. This 
introduces a latency of 250 μs at the final section, which is 
perfectly acceptable for the lowest frequency when simulating 
the biological cochlea. The device utilisation summary is 
presented in Table 1 

 

 

TABLE I.  DEVICE UTILISATION SUMMARY 

Slice Logic Utilisation Used Available Utilisation 

Number of Slice Registers 113,760 301,440 37% 

Number of Slice LUTs 136,957 150,720 90% 

Number used as Memory 3,005 58,400 5% 

 

IV. RESULTS 
We have implemented the CAR model in FPGA and 

compared the results with the software simulations of the 
model (Fig. 4). The impulse response and gain for 20 filter 
sections, measured using a maximum-length sequence as the 
input signal, are shown. The hardware implementation was 
verified by comparing Cadence NCSIM simulations with the 
results produced by the floating-point Python model. 

V. CONCLUSIONS 
In this paper, we have shown that we can implement up to 

1224 filter sections on a Xilinx Virtex-6 FPGA, due to low 
system complexity and ease of hardware implementation of the 
CAR model. Future work will aim to reduce the number of 
multipliers using resource allocation technique, so as to 
increase the number of filter sections on FPGA. Future work 
will also include implementation of IHC, OHC and AGC 
modules of the CAR-FAC model and integration of these 



 
Fig. 4. Implementation of CAR model in software and 
hardware (FPGA). Impulse response of (A) Software floating-
point implementation and (B) Hardware fixed-point 
implementation. Frequency response of (C) Software floating-
point implementation and (D) Hardware fixed-point 
implementation. 

elements with the filter sections. Furthermore, with the 
integration of all system elements, ‘r’ will be variable to 
control damping dynamically. Nonetheless, the FPGA 
implementation of the electronic cochlea described here may 
be used as a front-end sound analyser for various machine 
hearing applications. 

REFERENCES 
 

[1] J. J. Guinan, A. Salt, and M. A. Cheatham, “Progress in cochlear 
physiology after Békésy.,” Hearing research, vol. 293, no. 1–2, pp. 
12–20, Nov. 2012. 

[2] R. F. Lyon and C. Mead, “An analog electronic cochlea,” IEEE 
Transactions on Acoustics, Speech, and Signal Processing, vol. 36, 
no. 7, pp. 1119–1134, Jul. 1988. 

[3] J. Lazzaro and C. Mead, “Silicon modeling of pitch perception.,” 
Proceedings of the National Academy of Sciences of the United 
States of America, vol. 86, no. 23, pp. 9597–601, Dec. 1989. 

[4] J. Lazzaro and C. A. Mead, “A Silicon Model Of Auditory 
Localization,” Neural Computation, vol. 1, no. 1, pp. 47–57, 1989. 

[5] A. van Schaik, T. J. Hamilton, and C. Jin, “Silicon models of the 
auditory pathway,” in in Springer handbook of auditory research: 
computational models of the auditory system, vol. 35, R. Meddis, E. 
A. Lopez-Poveda, R. R. Fay, and A. N. Popper, Eds. Springer, 
2010. 

[6] T. J. Hamilton, C. Jin, A. van Schaik, and J. Tapson, “An Active 2-
D Silicon Cochlea,” IEEE Transactions on Biomedical Circuits and 
Systems, vol. 2, no. 1, pp. 30–43, 2008. 

[7] R. Wang, G. Cohen, K. M. Stiefel, T. J. Hamilton, J. Tapson, and A. 
van Schaik, “An FPGA Implementation of a Polychronous Spiking 
Neural Network with Delay Adaptation,” Frontiers in 
Neuroscience, vol. 7, no. February, pp. 1–14, 2013. 

[8] R. F. Lyon, “Cascades of two-pole-two-zero asymmetric resonators 
are good models of peripheral auditory function.,” The Journal of 
the Acoustical Society of America, vol. 130, no. 6, pp. 3893–904, 
Dec. 2011. 

[9] R. F. Lyon, “Filter cascades as analogs of the cochlea,” in in 
Neuromorphic Systems Engineering: Neural Networks in Silicon, 
no. lD, Tor Sverre Lande, Ed. Kluwer Academic Publishers, 1998, 
pp. 3–19. 

[10] R. F. Lyon, A. G. Katsiamis, M. Park, A. Ox, and E. M. Drakakis, 
“History and Future of Auditory Filter Models,” pp. 3809–3812, 
2010. 

[11] D. D. Greenwood, “A cochlear frequency-position function for 
several species--29 years later.,” Journal of the Acoustical Society 
of America, vol. 87, no. 6, pp. 2592–605, 1990. 

[12] P. Dallos, “The active cochlea,” The journal of neuroscience, vol. 2, 
no. 12, pp. 4575–4585, 1992. 

[13] R. F. Lyon, “Using a Cascade of Asymmetric Resonators with Fast-
Acting Compression as a Cochlear Model for Machine-Hearing 
Applications,” in Autumn Meeting of the Acoustical Society of 
Japan, 2011, pp. 509–512.  

 


	I. Introduction 
	II. OVERVIEW OF THE CAR-FAC MODEL OF THE COCHLEA
	III. Design Methodology and FPGA Implementation 
	A. Software Implementation
	B. FPGA Implementation

	IV. Results
	V. Conclusions
	References


