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Abstract— This paper deals with parameter extraction from
nonlinear frequency responses of resonant systems. We show that
nonlinear frequency responses can be exploited to identify not
only the Q-factor and the natural frequency of a resonator, but
also information about its internal structure. The proposed
method requires less demanding measurements and is less model-
dependent than the existing state-of-the-art methods. Its
accuracy is illustrated with simulations and it is experimentally
validated on a capacitive MEMS resonator.

Keywords—open-loop actuation; nonlinear regime; resonator
characterization; MEMS; pulsed-mode actuation.

I. INTRODUCTION

In this paper, we analyze and give experimental evidence of
accurate parameter extraction from a nonlinear resonant
frequency response. We apply our method to the
characterization of capacitive MEMS and validate it through
experimental results on a one-port high-Q capacitive MEMS.

Commonly, the characterization of a resonator consists in
estimating its natural frequency and Q-factor, either via open-
loop frequency response curves [1], or exponential decay time
measurements [2]. These measurements require low-amplitude
oscillation regimes and, hence, are hampered by low SNR.
Moreover, effects such as creep, fatigue, or dielectric charging
are known to impair the performance of resonators during their
lifetime [3-5] and can hardly be detected by the single
estimation of the Q-factor and the resonance frequency.

In nonlinear regimes, open-loop frequency responses are
distorted so that the symmetry of amplitude resonance curves
around the natural frequency is broken, sometimes resulting in
the emergence of jump discontinuities and bifurcation points.
A recent study has demonstrated Q-factor estimation from a
nonlinear frequency response [6], via precise measurements at
low amplitudes (hence at low SNR) and the knowledge of the
maximal amplitude on the frequency response, both of them
difficult to measure in practice. Another study has
demonstrated the efficiency of nonlinear least-squares fitting
for parameter estimation of piezoelectric MEMS resonators
from a nonlinear frequency response with jump discontinuities
obtained through optical measurements [7]. This last study
demonstrated that nonlinear frequency responses reveal more
information about a resonator than linear lorentzian responses.
However, the method developed in [7] requires a precise
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measurement of the upper bifurcation point and numerous
measurements around the maximal amplitude. These
shortcomings gave impulse to our development of a new
approach, casier to apply to mass produced resonators.

This paper is organized as follows: In section II, the
mathematical background required to perform parameter
estimation of a nonlinear response is presented. In Section III,
we illustrate parameter estimation on different pseudo-
experimental (i.e. simulated) data sets. In Section IV, we adapt
our method to a capacitive clamped-clamped MEMS resonator
and then validate it experimentally in Section V.

II. MATHEMATICAL BACKGROUND

A. Resonator analytical model
Resonators and MEMS devices exhibit a large variety of
nonlinearities, from hardening to softening effects [8]. For
example, the behavior of a resonator under sine-wave actuation
may be described by:
d 2x ® dx 2 0 0 .
—+——+ogx=G"(x)+ F" (x)sin(wf + 1
w2 o () + FP(x)sin(wr +9) (1)
where x is the normalized displacement of the resonator, an its
natural frequency, Q its Q-factor and F® and G® normalized
forces depending on a vector O of parameters. Assuming that
F® and G® only exhibit static memory-less nonlinearities and
x(f)=Asinot (0<4<1), F¥(x(¢)) and G®(x(¢)) may be expressed:

Fo(x@t) = ikaﬂ (A)sin((2k +)or)+ F (4)cos(2kot)
k=0
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Equation (1) may be analyzed by using the method of
harmonic balance [9]. Considering (2), this method yields:
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Equation (4) models the general case. Next, we will cast (4)
into a simpler formulation suited to our particular application.

B.  Case study

Let us assume a cubic nonlinearity with cubic stiffness v,
small static displacement (xy<<A4) and a linear force F°(x)=f.
Under these assumptions, 8 = (f;y), G®(x) = -yon*x® and:

h(A,(D,(D(),Q,f,’Y) =
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In the following sections, we present results obtained with

).

C. Mathematical formulation of characterization problems

Let us consider a set of N measurements (A, Ok)ke[1;N]
obtained by sweeping o at a constant actuation amplitude. Our
aim is to identify, with this data, the values of wo, O and 0 to
characterize the resonator. A general characterization method
consists in minimizing:

N
H(w0,0,8) = )[4y, 0, 00,0.0)f (©)

k=1

where /4 is defined by (4). This criterion yields quick and
accurate convergence, as illustrated in Section II1.

III. SIMULATION RESULTS

Given the previous mathematical analysis, we develop a
characterization procedure. We show how to fit a 4-parameter
nonlinear frequency response via the minimization of (6) and
illustrate our method on a resonator described by (5).

A.  Assumptions

We present a few sets of relevant simulations which
highlight that the minimization of H leads to an accurate
identification procedure. Several values of O, f and y defined

in (5) are considered (see Table I) with a natural frequency o
normalized to unity.

TABLE L SIMULATION PARAMETER VALUES
Parameter Values
Y -3x10° | -10° -5x10* | 5x10* 107 3x10°
0 10° 4x103 8x10° 10* 2x10*
f 10 10° | 3.3x10° | 5x10°

Then, we solve (5) for all the combinations of (wo,0,f,y).
For each combination, we generate a set of N=30 pseudo-
experimental measurements (Ax,®i)i[1;N] of a frequency sweep
response close to resonance. For the identification procedure,
we assume that the experimenter has enough a priori
knowledge to guess o in the range [wo(1-10/Q), wo(1+10/Q)].
For values of y larger than the ones considered in Table I, this
interval must be extended so that the jump discontinuity of the
amplitude response remains within the sweep range.
Nevertheless, enlarging this interval to include the jump
discontinuity has no effect in the fitting procedure. Finally, we
assume that the experimenter has also a priori information on
the values of O, fand y within a range of £100%.

B.  Proposed approach

For each set of (@o,0,f,y), we run 10000 nonlinear least-
squares fits, using a trust-region algorithm with a lower bound
[0,0,0,0]. Each of the 10000 tests corresponds to a different
initial condition (i,Qsfi,y:). In order to limit the computation
time, we set the maximum number of iterations at 100 and the
maximum number of function evaluations at 1000. For every
parameter set (wo,0.f,y), around 92% of the 10000 tests
converge to a local minimum, the remaining 8% stopping
prematurely due to an excessive number of iterations or
function evaluations. In these cases, H keeps decreasing too
slowly and more than 10000 iterations and function evaluations
would be needed to approach a minimum.

To avoid this outcome, we developed a recursive algorithm,
given in Fig. 1, which converges within 2 cycles (i.e. max 200
iterations and 2000 function evaluations) in 1-0.08>>99% of
cases.

Choose random initial values (©,,,0,,Y:f)) }

No

Local
minimum
Sfound?

Nonlinear least-squares fit
(100 iterations and 1000
function evaluations max.)

Fig. 1. Flow-chart of the recursive procedure. After 2 cycles, the success rate
is already greater than 99%.

C. Accuracy of the solution

In order to validate the optimization procedure, we check if
the local minimum found is accurate, i.e. if the parameters are
accurately identified. In all the simulations with the initial
conditions and parameter values considered in Sub-Section



IIILA., the algorithm converges to the expected values, with a
very small residual function H (<10'3%). To illustrate this
precision, Fig. 2 shows the simulated results (obtained by
solving A(4,®,w0,0,f,y)=0 for each given set of (wo,Q,f/;y)) and
the fit obtained after the nonlinear least-squares curve fitting
procedure described in Fig. 1. For the sake of readability, we
only report in Fig. 2 the results obtained with wo=1, 0=10000,
f=3.3%x1073, y==3x1073, y=—1x1073, y=—5x10"* and y=3x10" All
the simulations lead to a relative error lower than 10°% on
each estimated parameter. These results show that the
parameters are accurately extracted.

IV. APPLICATION TO CAPACITIVE MEMS RESONATORS

In this section, we show how to characterize a capacitive
clamped-clamped MEMS resonator in nonlinear regime and
demonstrate our method on an experimental setup.

A. Theoretical background

The force applied on the resonator of a clamped-clamped
resonator subject to the -electrostatic force may be
approximated by [10]:

&SIV, + 2V, sin(ot + @)

F

L
with I, = J'O o=

Where w.(x)=sin(mx)> is the approximated shape of the
clamped-clamped mode, ¥, the bias voltage, V. the actuation
voltage (V»>>Vae), S the surface of the plane electrodes at rest,
G the gap between the two electrodes and ¢ the permittivity of
the material between the two electrodes.
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Fig. 2. Typical curves: simulated frequency responses (crosses) and
corresponding nonlinear least-squares fits (wo=1, =10000, £=3.3.107).

Assuming that the total displacement of the resonator is largely
inferior to the gap (x<<1), a series expansion about x=0 of the
dynamic response of a second-order resonator yields:

d’x Qodx 5. 6y 2 3 -
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0 0

mass Mo (M = 3muol8).

Let us write x(f)=Asin®t. The method of harmonic balance
as in Sub-Section IL.A. yields:

h(AaQ9Q09Qe’Y) =

2 42172 2 202 8
N
32 Vucty QO 4 Qe

Equation (8) is only valid as long as the displacement of
the resonator is largely inferior to the gap distance. Outside
the scope of this assumption, more tedious calculations yield
the expression of 4. Some of them are reported in [11].

B.  Parameter extraction as a minimization problem

Let us now consider a set of NV experimental measurements
(Vi, Q) for k=1 to N and write:

N 2
HE(G€7QO7Q€7’Y)=Z{h@[%79k’QO’Q€’Y]} (9)

k=1 e

with an electric gain G.. To characterize the resonator, we
minimize H, with respect to G., Q, Q. and y. Compared to
Section III, the unknowns are now G., {2, Q. and y due to the
relationship between f; and .

In Section V, we describe our experimental setup and show
how to characterize a MEMS resonator described by (8).

V. EXPERIMENTAL RESULTS

A. Experimental setup

The resonator experimentally characterized in this study
was originally developed by SEXTANT Avionics (currently
THALES) [12]. It is industrially assembled by the fusion-
bonding of three etched silicon wafers and consists of a
resonant clamped-clamped beam resting on a rectangular
diaphragm. During the manufacturing process, the beam is
encapsulated in vacuum to achieve a high mechanical Q-factor
(O = 1.9x10* at V=15V and V,~10mV). The natural
frequency fy=wo/2 7 of the device is close to 68kHz.

A bias voltage V=60V and an actuation voltage V. are
applied to the resonator in a setup described in [13] where
Vaem10mV  and 25mV. With this setup, the frequency
response of the resonator can be obtained without parasitic
current effects [13].

B.  Experimental frequency response

Fig. 3 reports the two experimental low-noise sets of
measurements and the fitted curves after the nonlinear least-
squares fitting procedure explained in Section III, where the
normalized frequency is defined as /Qq. The fitted curves



highlights a very good agreement between the model and
experimental results. Compared to [6,7], Fig. 3 confirms that
the fitting procedure requires very few experimental
measurements around the maximal amplitude. The actuation
frequency is only swept down, corresponding to the upper
branch of the response and, hence, to a better SNR than the
lower branch.

The fitting procedure yields the values of Ge, Foy=Qo/27, Q.
and y. We deduce 0=1.22x10* at V,,=10mV and 0=1.02x10*
at Vee=25mV, G~=1.32V, fi=00/2n=68.25kHz. This resonant
frequency agrees well with the expected value [13]. One can
notice that the Q-factor decreases largely as the actuation
voltage (hence amplitude) grows. Since this resonator exhibits
parametric resonance at high bias voltages [14], we believe
that this decrease is related to this phenomenon. In Fig.3,
max(x) = 0.14 (at V,=25mV), sufficiently small for the third-
order Taylor series expansion of Subsection IV.A.

The values of G, and y give valuable information about the
structure of the resonator which can hardly be measured via
other methods since our sensor is encapsulated in an opaque
vacuum package.
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Fig. 3. Experimental nonlinear frequency responses (dark crosses) and fitted
curves (grey lines) after nonlinear least-squares fitting for V,,=10mV (left)
and V,.~25mV (right).
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VI. CONCLUSION

The results presented in this paper show that nonlinear
open-loop frequency responses allow parameter extraction
without demanding measurements around the maximal
amplitude and around the eventual bifurcations and/or jump
discontinuities. We gave the theoretical background for our
technique and the algorithm steps used to carry out the
parameter extraction. We applied our method to a capacitive
MEMS resonator and obtained experimental results showing
its accuracy. The information extracted from nonlinear
frequency responses may be used to evaluate the condition of
a resonator, paves the way to a better understanding of
resonant systems and offers promising developments for
industrial and maintenance applications. Future work will aim
at experimental validation of our technique to resonators
subject to both hardening and softening nonlinearities as well
as lifetime management of sensors used in harsh
environments.
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