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E-mail: fragarh2@epsg.upv.es, {macasu, jvalls,asperez}@eln.upv.es

Abstract—A high-speed non-binary LDPC decoder based on
Trellis Min-Max algorithm with layered schedule is presented.
The proposed approach compresses the check-node output mes-
sages into a reduced set, decreasing the number of messages sent
to the variable node. Additionally, the memory resources from
the layered architecture are reduced. The proposed decoder was
implemented for the (2304,2048) NB-LDPC code over GF(16)
on a Virtex-7 FPGA and in a 90 nm CMOS process. Our
implementation outperforms state-of-the-art NB-LDPC decoder
implementations for both technologies, achieving a throughput of
630 and 965 Mbps, respectively.

I. INTRODUCTION

Non-Binary Low-Density Parity-Check (NB-LDPC) codes
emerge as alternative to their binary counterparts in scenarios
where short/medium codeword length codes and better per-
formance at high signal-to-noise ratios (SNR) are required.
Additionally, they improve burst error correction capability,
especially with high order Galois fields. On the other hand,
the main drawbacks of NB-LDPC codes are: i) the high
complexity of their check-node (CN); ii) the large amount of
area spend on storage (RAM memories and registers); and
iii) the routing congestion that limits the overall decoding
throughput.

NB-LDPC codes were first investigated by Davey and
MacKay [1], as an extension of binary LDPC codes. Since
then, great efforts have been made to reduce the complexity
of the original Q-ary Sum-of-Product Algorithm (QSPA) [1].
Extended Min-Sum (EMS) [2] and Min-Max [3] algorithms
were proposed as approximations of the QSPA [1], reducing
considerably the CN complexity. However, EMS and Min-Max
algorithms are unable to reach high throughput because of the
use of forward-backward (FB) metrics on the CN processor.

Recently, Trellis EMS (T-EMS) algorithm [4] [5] was pro-
posed. It enables the parallel processing of messages at the CN
and increases the throughput in comparison with decoders that
use FB metrics. The main disadvantage of T-EMS algorithm
is that the CN complexity is still high due to the parallel
processing and, thus, it leads to a large area decoder. Simplified
Trellis Min-Max (T-MM) algorithm [6] was proposed with
the aim of reducing the CN complexity of T-EMS algorithm
without compromising the decoding performance. Despite the
advantages of T-MM compared with its predecessors, the
area required is still high due to thelarge amount of storage
elements, specially when layered schedule is applied.

In this paper we propose a NB-LDPC decoder architecture
for T-MM algorithm which requires many less memory ele-
ments than the conventional implementation of this algorithm.

The main idea is to minimize the messages exchanged between
CN and VN processors. Thus, we remove any redundant
information and only keep the minimum set of values required
to reconstruct all the messages at the VN processor. The
proposed decoder architecture is implemented on a Virtex-7
FPGA for a (2304,2048) NB-LDPC code over GF(16) [7].
It needs 83% less memory resources in comparison with a
conventional implementation of T-MM algorithm [6] without
introducing any performance loss. The throughput achieved is
630 Mbps, outperforming state-of-the-art NB-LDPC decoders
implemented on FPGA devices [8] [9] [10].

The rest of the paper is organized as follows: Section II
reviews the basis of T-MM algorithm, in Section III the check
node and the top-level decoder architecture are derived and
implementation results for FPGA and ASIC are presented.
Finally, conclusions are outlined in Section IV.

II. BASIS ON NB-LDPC CODES AND T-MM DECODING
ALGORITHM

NB-LDPC codes are linear block codes defined by a sparse
parity-check matrix H with M rows and N columns, where
each non-zero element hm,n belongs to Galois field GF (q =
2p). We consider regular NB-LDPC codes with constant row
weight dc and column weight dv . Each row (column) of H is
associated to a check node CN (variable node VN). Qm,n(a)
and Rm,n(a) denote the exchanged messages from VN to CN
and from CN to VN for each symbol a ∈ GF (q), respectively.
N (m) andM(n) denote the sets of non-zero elements per row
and column in H, respectively.

Trellis Min-Max (T-MM) algorithm [6] calculates the out-
put CN reliabilities by organizing the ∆Qm,n(a) messages in a
trellis and including an extra column ∆Q(a) which enables the
parallel processing in the CN processor. ∆Qm,n(a) is the delta
domain information defined as ∆Qm,n(a + zn) = Qm,n(a),
where zn ∀ n ∈ N (m) are the tentative hard-decision symbols.

In order to represent the trellis in a CN, the reliability
information is organized in a matrix with the GF symbols
in its rows and the n ∈ N (m) in its columns. Therefore,
once the delta domain is applied, the most reliable symbols
are located in the first row of the trellis, which is the hard-
decision path. T-MM requires the computation of the two most
reliable messages per row in ∆Qm,n(a). The most reliable
values, m1(a), are used to compute the extra column values
using (1).

∆Q(a) = min
a′∈conf∗(1,2)

{
max (m1(a′))

}
(1)
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Fig. 1. FER-BER performance of T-MM algorithm for the (2304,2048) NB-
LDPC code over GF(16), with AWGN channel and BPSK modulation.

conf∗(1, 2) [6] includes all possible sets of at most two
symbols a′ among the m1(a) set, which deviate at most twice
from the hard-decision path in the trellis. The set of symbols
a′ must satisfy the parity check equation for each symbol a ∈
GF (q).

Each ∆Q(a) value from (1) is obtained from the set
m1(a′), searching one or two symbols (a∗1 and a∗2) that ensure
the highest reliability (minimum value) for ∆Q(a). If only
one symbol is selected, then the corresponding ∆Q(a) value
is said to be a one-deviation path, otherwise, is considered to
be a two-deviation path. For each a ∈ GF(q), the set of one or
two symbols that ensures the highest reliability is denoted as
a∗ to distinguish it from the rest of a′ possible sets. ∆Q(a)
value is chosen from the maximum between the m1(a∗1) and
m1(a∗2) values.

CN output messages ∆Rm,n(a) are obtained using
∆Q(a), m1(a), m1(a) column index (m1col(a)) and the
second most reliable values m2(a). The following algorithm
is applied:

for j = 1→ dc do
if m1col(a

∗
1) 6= j or m1col(a

∗
2) 6= j then

∆Rm,nj (a) = ∆Q(a)

else if m1col(a
∗
1) = m1col(a

∗
2) then

∆Rm,nj (a) = m2(a)

else
∆Rm,nj (a) = m1(a)

end for

Finally, conversion to the normal domain is performed as
follows: Rm,n(a + β + zn) = λ ·∆Rm,n(a), where β is the
CN’s syndrome and λ is a scaling value that improves the
error-correction performance of the algorithm.

The frame error rate (FER) and bit error rate (BER)
performance for the T-MM algorithm are presented in Fig. 1,
where the (2304,2048) NB-LDPC code over GF(16) is used.
The fixed-point model, which quantizes the input messages
with 5 bits (w = 5b), introduces a performance loss of less
than 0.05dB compared to the floating-point (fp) model. This
code will be considered in the rest of the paper to show the
implementation results of the proposed approach.

III. PROPOSED DECODER ARCHITECTURE

T-MM algorithm [6] and the preceding T-EMS approach
[4] [5] require the exchange of q × dc messages from CN
to VN. This amount of messages causes wiring congestion
in the derived decoder architectures and, at the same time,
increases the memory requirements of the decoder, especially
when high-order fields (q > 8) and high-rate NB-LDPC codes
are considered in the design. In this paper, we propose a new
architecture for T-MM algorithm, which takes advantage of the
redundancy in the output messages from the CN, to reduce the
size of the messages exchanged with VN processors.

A. Check-node architecture

CN output (∆Rm,n(a)) contains dc messages per GF(q)
symbol. Among them, there are dc − 1 or dc − 2 messages
equal to ∆Q(a), depending if the number of deviations made
from the hard-decision path in the extra column calculation (1)
is one or two, respectively. The rest of messages are equal to
m2(a) or m1(a), respectively.

In this paper we propose an architecture that exchanges
only the minimum amount of information from CN to VN.
Let’s define E(a) as the set of messages corresponding to
the extrinsic information sent to the VN processor. The E(a)
values compress the m1(a) and m2(a) list of values in a
unique set, using the following rule: if a ∆Q(a) value is
obtained from one deviation, E(a) = m2(a), otherwise,
E(a) = m1(a).

On the other hand, the reliability values from ∆Q(a) are
the most repeated in the exchanged messages from CN to
VN. This set represents the intrinsic information obtained
during the CN processing. We will refer to ∆Q(a) as I(a)
in the rest of the paper. However, I(a) and E(a) do not
include all the necessary information to generate all q × dc
CN outputs messages in the T-MM algorithm [6]. In addition
to I(a) and E(a), the index of the minimums involved in
the calculation of the set I(a) is also required to know the
positions where E(a) values must be used at the VN processor
instead of I(a). Taking into account that at most two symbols
are used to derive each one of the I(a) values, the deviation
information is split into two sets P1(a) and P2(a), where
each value of the sets requires dlog dce bits to define the
position of the minimum involved to derive I(a). Finally, the
updated hard-decision symbols (z∗n) are required to construct
the output CN messages (Rm,n(a)). z∗n is obtained by adding
the hard-decision symbols zn to the syndrome value β as
z∗n = zn + β ∀ n ∈ N (m). These symbols are used in the
delta-to-normal domain conversion at the VN processor.

Table I summarizes the minimum information to be ex-
changed to the VN processor in terms of bits, and also the
numerical results for the (2304,2048) NB-LDPC code over
GF(16), where H is constructed following the methods in [7]
[11]. In this code, dc = 36, dv = 4 and the number of bits for
the quantized messages are w = 5.

On the other hand, the T-MM based decoder architecture in
[6] exchanges 2880 bits (q×dc×w) from CN to VN for the tar-
get code and w = 5. So, our proposal reduces the total wiring
connections in 83% compared to [6]. It is important to remark
that this reduction in the amount of information exchanged
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TABLE I. MINIMUM NUMBER OF BITS REQUIRED TO BE EXCHANGED
FROM CN TO VN PROCESSOR

Number of bits

Generic
(2304,2048) NB-LDPC code, GF(16)

Proposed Conventional

I(a) (q − 1)× w 75 bits -
E(a) (q − 1)× w 75 bits -
z∗n dc × p 144 bits -

P1(a) (q−1)×dlog dce 96 bits -
P2(a) (q−1)×dlog dce 96 bits -

Rm,n(a) q × dc × w - 2880 bits

Total 486 bits 2880 bits

between CN and VN does not introduce any performance loss
compared to T-MM algorithm [6] since no approximations
are made in the message processing, just compression of the
information is performed.

The top-level CN architecture is presented in Fig. 2.
Parallel processing is adopted to handle the input messages
Qm,n(a) and the tentative hard decision symbols zn through
all the CN blocks.

Fig. 2. Check-node top-level architecture

B. Top-level decoder architecture

The CN architecture presented in Section III-A is included
in a decoder with horizontal layered schedule. Layered im-
proves the convergence of the T-MM algorithm and, at the
same time, the area of the entire decoder is considerably lower
than the required by a fully parallel one.

Besides the above commented benefits, another important
advantage comes from the fact that the layered schedule re-
quires to store the CN output messages from one iteration to be
used in the next one. Since the proposed decoder implements
only one CN processor, the messages from the last iteration
can be stored using shift registers with M stages, which
reduces the number or registers required. The implementation
of a conventional CN processor with q × dc output messages
would require q × dc × w × M registers (737280 for the
target code). On the other hand, our proposal only requires
M × [2(q−1)× (w+ dlog dce) +dc×p] registers (121344 for
the same code) to store the messages from the last iteration.
This means a reduction of 83% in the use of registers compared
to a conventional implementation of T-MM algorithm.

The VN processor requires a decompression network to
build the CN output messages. Thus, the messages listed
in Table I are converted to the q × dc messages needed to
perform the operations in the VN processor. The following
operations must be performed to generate all the messages:

for j = 1→ dc do
if P1(a) 6= j or P2(a) 6= j then

Out(a + z∗j ) = I(a)

else
Out(a + z∗j ) = E(a)

end for

The proposed network is detailed in Fig. 3, where an
example for GF(8) is used. In total, dc decompression networks
are required to generate all q × dc values.
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Fig. 3. Decompression Network for CN output messages. Example for GF(8).

The top-level decoder architecture is presented in Fig. 4,
where the Check Node Processor is the one from Fig. 2 and
the blocks labeled as DN are the decompression network
from Fig. 3. The blocks labeled as P and P−1 are the
permutation and inverse permutation networks responsible of
rotating the messages according to the hm,n non-zero values
of H. The SR block is the shift register that stores the CN
output messages from one iteration to be used in the next one.
The “VN mem” block is the memory required to store the

Fig. 4. Top-level proposed decoder architecture

processed messages during the decoding operation according
to the layered schedule. The depth of the required memories
fits with the size of the circulant sub-matrices which form H
[7] [11]. In the case of the target code, the size of the circulant
sub-matrices is QC = 64, which allows us to implement
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TABLE II. COMPARISON OF THE PROPOSED NB-LDPC DECODER
WITH OTHER WORKS IMPLEMENTED IN FPGA DEVICES FROM LITERATURE

Algorithm Min-Max
[8] IHRB [9] M-GBFDA

[10]
T-MM

[This Work]

Code (744,653)
GF(32)

(403,226)
GF(32)

(837,723)
GF(32)

(2304,2048)
GF(16)

Code length
(bits) 3720 2015 4185 9216

rate 0.88 0.56 0.86 0.89
Device Virtex-2 Virtex-5 Virtex-6 Virtex-7

Slice LUT 47341 7841 29965 81644
Slice

Registers 44659 529 21632 51995

BRAM 180 56 112 8
fclk (MHz) 106 117.6 222 226

Iterations 15 25 20 10
Throughput

(Mbps) 9.30 90.68 267 630.4

efficiently the memories in LUTs instead of BRAMs. The same
conclusions are derived for the memories used to store the
channel LLR values “LLR mem”.

The decoder architecture from Fig. 4 was implemented
on a Virtex-7 FPGA device for the target code and the
results are presented in the last column of Table II. Under
the best knowledge of the authors, Table II includes the
best decoder architectures found in the literature which report
implementation results for FPGA devices. We include the ones
that achieve higher throughput, though each one implements
different algorithms and considers different NB-LDPC codes.
Our decoder significantly outperforms, in terms of throughput,
the best decoder found in the literature for Min-Max algo-
rithm implemented in FPGA [8]. In the case of the decoders
proposed in [9] and [10], the throughput achieved is in the
order of hundred on Mbps for GF(32). On the other hand, these
algorithms exhibit considerable performance loss (between 0.7
- 1.2 dB), when compared against T-MM algorithm and it is
important to remark that the decoding performance of this kind
of algorithms do not improve when the number of iterations is
increased. In addition, the NB-LDPC code used in this paper
has the highest rate and the longest code length when compared
against the others proposals presented in Table II.

The proposed decoder achieves a throughput of 630 Mbps,
the highest for a NB-LDPC decoder implemented in a FGPA
device. This throughput is calculated as

Throughput =
fclk[MHz] ·N · p

It · (M + dv · seg) + (QC)

[
Mb

s

]
,

where It represents the number of iterations and seg is the
number of pipeline stages used in the decoder. In the proposed
decoder, seg = 17, dv = 4 and It = 10.

The decoder from [6] is, under the best knowledge of
the authors, the most efficient decoder implementation for
ASIC reported in the literature. We include in Table III the
ASIC implementation results for the decoder from [6] and for
our proposed approach for the GF(16) NB-LDPC code used
through this paper. A 90 nm CMOS process with standard
cells and operating conditions of 25oC and 1.2 V were used.
It can be seen from Table III that our proposal outperforms
the decoder from [6] in gate count and area in 48% and
38%, respectively, while the throughput achived is similar in
both cases. These results confirm that the proposed decoder is
suitable for FPGA and ASIC implementations.

TABLE III. ASIC IMPLEMENTATION OF THE PROPOSED NB-LDPC
DECODER FOR THE (2304,2048) NB-LDPC CODE OVER GF(16)

[6] [This work]
Report Post-layout Post-layout

Gate Count (NAND) 1882 K 975 K
fclk (MHz) 330.8 333.3

Throughput (Mbps) 957.5 964.7
Area (mm2) 16.84 10.49

IV. CONCLUSIONS

We propose a NB-LDPC decoder which outperforms state-
of-the-art implementations on both FPGA and ASIC tech-
nologies. Our approach presents an implementation for T-
MM algorithm that greatly reduces the number of connections
between check node and variable node processors and the
memory requirements in a layered schedule, compared with
a conventional implementation of T-MM based decoders.
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