
A USB3.0 FPGA Event-based Filtering and Tracking 
Framework for Dynamic Vision Sensors 

A. Linares-Barranco 1,3, F. Gómez- Rodríguez 3, V. Villanueva 2, L. Longinotti 2, T. Delbrück 1,2.
1 Institute of Neuro Informatics. UZH-ETHZ and 2IniLabs GmbH, Zurich, SWITZERLAND 

3 Robotic and Technology of Computers Lab. University of Seville. Seville, SPAIN 
alinares@atc.us.es 

Abstract—Dynamic vision sensors (DVS) are frame-free sensors 

with an asynchronous variable-rate output that is ideal for hard 

real-time dynamic vision applications under power and latency 

constraints. Post-processing of the digital sensor output can 

reduce sensor noise, extract low level features, and track objects 

using simple algorithms that have previously been implemented 

in software. In this paper we present an FPGA-based framework 

for event-based processing that allows uncorrelated-event noise 

removal and real-time tracking of multiple objects, with dynamic 

capabilities to adapt itself to fast or slow and large or small 

objects. This framework uses a new hardware platform based on 

a Lattice FPGA which filters the sensor output and which then 

transmits the results through a super-speed Cypress FX3 USB 

microcontroller interface to a host computer. The packets of 

events and timestamps are transmitted to the host computer at 

rates of 10 Mega events per second. Experimental results are 

presented that demonstrate a low latency of 10us for tracking 

and computing the center of mass of a detected object. 

I. INTRODUCTION

Dynamic Vision Sensors [1] mimic part of the biological 
retina’s functionality in silicon chips using CMOS circuits 
with asynchronous communication of sensor output events 
(called Address-Event-Representation) [2][3]. Each sensing 
unit, or pixel in these chips, is analogous to an ON/OFF 
channel pair of bipolar and ganglion cells after the cones of a 
biological retina. They work independently of each other. 
Each of them senses incoming visual information and sends 
events that signal log intensity brightness changes. The main 
advantages of these sensors is the combination of local gain 
control, low latency, and sparse output. Due to the circuitry, a 
sensed change by any of the pixels is sent out within a 
millisecond of occurrence and events have microsecond 
resolution at the chip output. This philosophy is radically 
different to the one in classic machine vision. Conventional 
digital cameras work by integrating photocurrent over a short 
period of time (exposure time) and then they spend a 
considerable amount of clock cycles in sending out a whole 
picture or frame, even though only a few pixels may have 
changed since the last captured frame. In the central nervous 
system, most important information arrives first to the brain 
and it is processed in a high priority way, sometimes in an 
involuntary and reflexive way. The use of digital cameras to 

emulate such kind of processing implies an enormous amount 
of computational resources to extract that crucial information 
from the frames in the available time between consecutive 
frames. For hard real-time systems this biological mimicking 
approach is crucial because it is allowing the development of 
embedded systems working with visual information that are 
able to perform relatively complex visual tasks, like fast object 
detection and tracking, as we propose in this paper. Several 
research groups have developed similar sensors, but the 
operational principle is the same, like ATIS/cnmDV [1]. The 
processing framework proposed here could apply to other 
kinds of event-based sensors, like cochlea [4] and olfactory 
ones [5]. Novel event-based processing systems exploit mesh 
networks of convolutions [6] that allow the implementation of 
ConvNets for event-based classification; and architectures 
able to implement event-based learning, like MINITAUR [7]. 
This paper is focused on cleaning and improving the stream of 
events coming out from the DVS with the aim of reducing 
unnecessary communication and increasing the accuracy and 
speed of any event-based classifier or learning algorithm using 
these sensors. We present a new framework for event-based 
algorithms in hardware that uses the DAVIS[11] retina camera 
and a low cost FPGA in the same platform. A complete logic 
infrastructure is presented covering not only the inclusion of 
any event-based filter or algorithm, but also the interface to a 
FX3 microcontroller that supports the USB3.0 bus to a 
personal computer able to send packets of events at a peak rate 
of 10Meps with precise timestamps that can be monitored and 
stored through the jAER open-source software [8]. Section II 
presents a completely event-based processor able to filter 
background noise and then detect and track fast and slow 
objects. Then section III describes the hardware framework to 
implement and test event-based visual algorithms. Finally, 
some results and conclusions are shown in sections IV and V. 

II. FPGA EVENT-BASED FILTERING AND OBJECT TRACKING

Figure 1 shows the proposed filter architecture for multiple 
objects detection and tracking. It is composed of two main 
blocks: the background activity filter (BAF) and the object 
tracker which offers the center of mass calculation (CMCell). 
The CMCell can be replicated several times in daisy chain.  

This research is supported in part by Spanish grant (with support from the 
European Regional Development Fund) BIOSENSE (TEC2012-37868-C04-
02), by the Swiss NCCR Robotics and EU projects SEEBETTER and 
VISUALISE. 



Figure 1.  BAF and x4 Object Trackers (in cascade) block diagram. 

A. Background Activity Filter

The ON/OFF bipolar events of the DAVIS, which represent the 
temporal contrast changes (DVS events), are processed first by 
a Background Activity Filter, BAF (jAER[8]). This is able to 
filter all the non-spatially and non-temporally correlated event 
rate activity. These DVS streams usually contain sporadic 
events due to noisy currents not related to light changes in their 
pixels. This sporadic activity decreases the performance of any 
filter, so it must be removed. BAF uses an always-on 32-bit 
timer for time measuring. For each incoming event the current 
timer value is copied into a t1 register. A 128x128 array of 32-
bit words (implemented on FPGA RAM blocks) stores the last 
correlated event timestamps (called t0, which holds the last t1 
for a set of neighbor’s previous events). This 128x128 array 
can completely hold a sensor with the same size, or a higher 
resolution sensor by subsampling the DVS address space (in 
this work 4 neighbor pixels of DAVIS share the same t0) as in 
[9], which implies spatial correlation. BAF will pass through 
any incoming event if (t1-t0) < tTH, where tTH can be 
parameterized. Once the decision is made to pass through the 
event or cancel it, the t1 value is stored in memory as t0 to 
process the next event. It can be stored not only in the 
corresponding address (nb0), but also in a neighbor-hood (nb1-
nb8) to increase the spatial correlation (see Figure 2). 

Figure 2.  Background Activity Filter. Top: from AE space 7 most signifi-
cant row and column addresses bits are used to address BAF memory. Center 

side: 4 pixels (px1-px4) share t0. Max 6x6 pixels spatial correlation can be 
used. Right side: timestamp t0 corresponds to last spatially correlated event 

and t1,t1’ are two possible current event timestamps around the threshold tTH. 

B. Event-based Tracker

A tracker must be able to detect a potential object from DVS 
events and then it has to be able to follow that object while it is 
moving through the visual field. To accomplish this, each 
proposed tracker starts waiting for an object at a particular 
initial position and window of the visual field, called a cluster. 
This initial cluster location and size is configurable by 
software. As soon as a number of events, Nev, fall into the 
cluster within a configurable period of time, then, the tracker 
marks itself to have detected an object. A configurable spatial 
extension over the cluster size is always monitored by the 
tracker for dynamic decision making on cluster movements and 
updates of the cluster size. Nev can be adjusted dynamically for 
automatic adaptation to different object speeds as explained 
below. Depending on the evolution of events falling in the 
cluster several tasks are performed in parallel: (1) The cluster 
can move through the visual field according to the calculation 
of the center of mass (CM) of those Nev events. (2) The cluster 
size can be enlarged or shrunk from its initial size depending 
on the presence of events both in the cluster and its extension. 
If there is activity in this extension area the cluster is enlarged. 
If the activity is concentrated around the center of the cluster 
then it is shrunk. (3) The current CM can be averaged with a 
power of 2 fraction of the last CM events to low-pass-filter and 
reduce big changes in the trajectory. (4) This Nev is fixed when 
tracker is reset, but if the next Nev events are detected in a very 
short period of time (the object speed is increasing), the tracker 
will increase Nev for the next iteration of the process to increase 
the precision of the CM calculation; conversely if the needed 
time for receiving Nev events increases (the object speed is 
decreasing), the tracker will decrease Nev to reduce the latency 
in the CM calculation (precision can be reduced). These 
dynamic changes of Nev allow the tracker to adapt to object 
speed changes automatically. In this work we use an x2 factor 
for increasing Nev and a /2 factor for decreasing Nev, which are 
translated into bit-shift operations in the logic. 

Up to 4 different objects can be detected and tracked in parallel 
with the developed architecture. Each of these trackers has one 
input and three different outputs: CM events (center of mass 
events), cluster events (detected object events) and pass-
through events. This last one is sending out all the events not 
falling into the cluster of the current tracker, so this output 
represents the portion of the sensed DVS events where all the 
events of the first detected object have been filtered out. This 
output is used by the next tracker for detecting a new object in 
the visual field. There is no limit in the number of trackers to 
be implemented except for the resources limit of the selected 
FPGA. For a Lattice LFE3-17EA (around $40) 10% of 
resources (1.7k gates) are needed per tracker. 

III. FRAMEWORK

The BAF and trackers have been implemented in a new 
platform developed as a host platform for any event-based 
processing algorithm for DVS sensors suitable for FPGA that 
improve previous state of the art, like [10]. The architecture, 
as can be seen in Figure 3, is composed of a DAVIS [11] 
sensor, a Lattice ECP3 FPGA with 17K logic gates, an ADC, 
an Inertial Motion Unit (IMU) and a Cypress FX3 USB 3.0 
Super-Speed microcontroller. The IMU is used for measuring 
movements of the sensor [12]. It is composed of a gyroscope 



and an accelerometer. An on board ADC is converting the 
analog scan output of the sensor in order to reconstruct a 
digital frame in the host computer. All the information is 
converted into events and a timestamp is assigned as needed 
for the data in the FPGA logic. A CAVIAR [13] connector 
allows to connect to this framework an external event source, 
like a sequencer [14]. 

Figure 3.  DevBoard USB3 platform photograph. Red marks signalize 
connectors, LEDs, microcontroller, FPGA, ADC, IMU and DAVIS retina 

Figure 4.  FPGA logic block diagram 

Figure 4 shows a block diagram of the logic in the FPGA. The 
DAVIS is producing three different sensing outputs: (1) 
Polarized events to identify increments or decrements in the 
brightness of a particular pixel, called DVS events; (2) 
periodic sequences of analog values that corresponds to the 
gray level luminosity of each pixel (APS); and (3) inertial 
information about the accelerations that the sensor is 
experiencing (IMU). The DVS output of the DAVIS is 
connected in parallel to the DVS state machine (SM) and to 
the Event Filter, with a C-element taking care of the 
acknowledge (ACK). DVS SM takes the 8-bit events that 
encode the row or column address together with a bit to 
indicate whether it corresponds to a row or a column and a 
polarity bit. Then, it expands the address to 12 bits to support 
a unified address format even with expected sensor size 
changes in the future, and a 3-bit header to clearly identify 
these 12 bits as a DVS event. On the other hand, MISC SM 
adds a different header to the output of the event-based filter, 
so these MISC events can be differentiated in the host 
computer (ie in jAER [8]). These two SMs send their events to 

two small FIFOs (16 words) that are joined into a next one. In 
parallel, the APS/IMU SMs are scanning digital frames and 
inertial information and converting it into a sequence of 15-bit 
events, as DVS and MISC events but with different header 
codes. Then, the MUX SM multiplexes all events waiting in 
FIFOs and, following a priority, a timestamp is attached to 
some of them using a global and common 15-bit timer. Then 
they are sent to a double-clocked FIFO (dual-FIFO), to cross 
into the USB clock domain. The FX3 SM sends those events 
and time-stamps from the dual-FIFO to the USB buffer of the 
micro-controller to be sent to the host computer. 

Figure 5.  jAER capture of DVS + Tracker cluster events (purple) + Center of 
Mass events for 268us of a spinning dot at 100rpm. 

Figure 5 shows a jAER screen shot of 268us of DVS and 
MISC events recording while DAVIS was stimulated by a 
spinning dot at 100rpm using a fan. Black and white dots 
represent DVS events, while pink dots are those DVS events 
inside one tracker cluster and blue dots are CM events. 

IV. EXPERIMENTS

Using this framework, with the BAF and x4 trackers in the 
FPGA logic “Event/Filter Processor” block of Figure 4, we 
have tested the system with two different stimuli, keeping the 
same initial parameters (Table 1). 

A. Slow speed objects

Previously recorded events from a 128x128 DVS retina, which 
was set on a bridge over a 5-lane freeway monitoring many 
cars, have been used to test this framework for low speed 
objects. These recorded events can be downloaded from jAER 
web page [8]. Figure 6 shows the output for one tracker (one 
car) and 1.2 seconds. Events falling inside the clusters 
represent a moving car (blue), and CM events are in red. When 
the car is far away, only a few events are produced at the 
horizon line (around row address 50). The closer the car is to 
the bridge, the bigger it becomes, and so the more events are 
produced by the DVS sensor (lower row addresses). Figure 6A 
represents the output of a tracker without dynamic adaptation 
of Nev. When the car is closer (so bigger and faster motion), 



CM output is not precise. Figure 6B shows the output with 
dynamic capabilities. Nev is increased at the same time the car 
is approaching, and the CM output is more precise. CM inter 
event interval time is 150 ms when the car is far and 10 ms 
when the car is closer. Nev is fixed to 15 events for the static 
version and it was initialized to 5 in the dynamic one, where it 
oscillates between 10 when the car is far away and 80 events 
when it is closer. 

A

B
Figure 6.  Car tracking using BAF and x4 trackers. Only 1 tracker output is 
shown. A:Without dynamic capabilities. B: with dynamic adaptation. Blue 
dots represent events that fall in the cluster. Red dots represent CM events. 

B. High speed objects

In this second experiment a set of 52 poker cards was riffled in 
front of the DAVIS sensor in 500ms, as a riffle shuffler mixes 
the cards. Regular frame-based digital cameras cannot capture 
proper images to be processed in this scenario unless they use a 
frame rate of over 200Hz. With DVS events no special care or 
operation is needed. The same cluster radius and extension size 
trackers parameters (Table 1) are used in both experiments. 
Figure 7 shows the output of the tracker for one card falling 
from top to bottom of the retina visual field. At the beginning 
the card is still and when the finger releases the card, it speeds 
up quickly. It can be seen how the number of events in the 
cluster per time unit keep growing over time (blue dots), while 
number of CM events per time unit starts to adjust to the 
increment of speed and stays in the same range. At the 
beginning CM inter-event interval is 750 us, and then it is 
adjusted at 25 us. Nev has a reset value of 3 events and it grows 
up to 12 to accommodate the stimulus. 

Figure 7.  Poker card fast tracking for 16 ms with a Dynamic tracker. 

Table 1. Dynamic trackers initial parameters 
Parameter Value 

BAF tTH 300 us 

Cluster radius 5 pixels 

Cluster extension size 2 pixels 

Initial Integration (Nev) 5 evs (cars), 3 evs (cards) 

Inactivity Reset time 200 ms (cars), 2 ms (cards) 

CM history average 4 CM events 

V. CONCLUSION

This paper presents an FPGA based framework for event-based 
filtering and processing, able to detect and track objects at 
different speeds due to dynamic adaptation of key parameters. 
It cannot ensure the number of objects in the scene, since a 
fixed number of trackers are working in parallel on the FPGA, 
and those represent the maximum detected number of objects. 
The presented framework has been designed and manufactured 
as a testing and development platform for event-based 
algorithms for FPGAs. It has been interfaced to jAER 
providing new types of events and sharing the same 
timestamping mechanism for all the possible events coming 
from the sensors or from event-based hardware algorithms. 

REFERENCES 

[1] Posch, C.; Serrano-Gotarredona, T.; Linares-Barranco, B.; Delbruck, T., 
"Retinomorphic Event-Based Vision Sensors: Bioinspired Cameras With
Spiking Output," Proceedings of the IEEE , vol.102, no.10, pp.1470,1484, 
Oct. 2014. 

[2] Sivilotti, M., “Wiring Considerations in analog VLSI Systems with
Application to Field-Programmable Networks”, Ph.D. Thesis, California
Institute of Technology, Pasadena CA, 1991. 

[3] Boahen, K.A. “Communicating Neuronal Ensembles between
Neuromorphic Chips”. Neuromorphic Systems. Kluwer, Boston 1998. 

[4] Chan, V.; Liu, S.-C.; van Schaik, A., "AER EAR: A Matched Silicon 
Cochlea Pair With Address Event Representation Interface," Circuits and
Systems I: Regular Papers, IEEE Transactions on , vol.54, no.1, pp.48,59, 
Jan. 2007 

[5] Koickal, T.J. et al. "Analog VLSI Circuit Implementation of an Adaptive
Neuromorphic Olfaction Chip," Circuits and Systems I: Regular Papers,
IEEE Transactions on , vol.54, no.1, pp.60,73, Jan. 2007 

[6] Zamarreno-Ramos, C. et al., "Multicasting Mesh AER: A Scalable 
Assembly Approach for Reconfigurable Neuromorphic Structured AER 
Systems. Application to ConvNets," Biomedical Circuits and Systems, 
IEEE Transactions on , vol.7, no.1, pp.82,102, Feb. 2013 

[7] Neil, D.; Liu, S.-C., "MINITAUR, an Event-Driven FPGA-Based Spiking 
Network Accelerator," Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on. (in press and available online in 2014) 

[8] jAER opensource project: http://sourceforge.net/p/jaer/wiki/Home/

[9] Liu, H.; Brandli, C.; Li, C.; Liu, S.-C.; Delbruck, T. “Design of a
Spatiotemporal Correlation Filter for Event-based Sensors”. ISCAS 2015 

[10] Gómez-Rodríguez, F. et al. “AER tools for Communications and 
Debugging”. Proc. IEEE ISCAS06. Kos, Greece May 2006. 

[11] Brandli, C.; Berner, R.; Yang, M.; Liu, S.-C.; Delbruck, T. “A 240x180 
130 dB 3us Latency Global Shutter Spatiotemporal Vision Sensor,” IEEE 
Journal of Solid-State Circuits, vol. Early Access Online, 2014. 

[12] Delbruck, T.; Villanueva, V.; Longinotti, L., "Integration of dynamic
vision sensor with inertial measurement unit for electronically stabilized
event-based vision," ISCAS 2014, pp.2636,2639. Melbourne. 

[13] Serrano-Gotarredona, R. et al., “CAVIAR: A 45k Neuron, 5M Synapse, 
12GConnects/s AER Hardware Sensory–Processing–Learning-Actuating 
System for High-Speed Visual Object Recognition and Tracking,” IEEE
Trasns. on Neural Networks, vol. 20, N. 9, pp. 1417- 1438, Sept. 2009. 

[14] Berner, R.; Delbruck, T.; Civit-Balcells, A.; Linares-Barranco, A., "A 5
Meps $100 USB2.0 Address-Event Monitor-Sequencer Interface". ISCAS
2007. pp.2451,2454. New Orleans, USA. 


