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Abstract—Analog behavioral models are widely used to reduce
the complexity in hierarchical analog circuit design and verifi-
cation. In the presence of process variations and atomic-level
fluctuations, however, these models have to be extended to take
variability into account. In this paper, we present a probabilistic
solution that treats the behavioral model coefficients as multi-
dimensional random variables and supports non-Gaussian as
well as correlated parameters. A voltage divider and a bandgap
voltage reference demonstrate the capabilities of our modeling
approach in terms of accuracy and efficiency.

I. INTRODUCTION

Complexity issues in analog circuit design can be tackled by
hierarchical approaches with top-down design and bottom-up
verification [1], [2]. However, the simulation-based verification
is only efficient when higher-level models replace the circuit-
level representations of sub-components. Analog behavioral
models are particular approaches for this task [3].

Circuit variability arises from process variations and atomic-
level fluctuations [4], [5]. The simulation-based joint analysis
of these effects is the subject of the FP7 research project
SUPERTHEME. In this paper, we discuss how variability
information available in a process design kit (PDK) can be
transferred to variation-aware analog behavioral models of
analog circuit components to increase the verification effi-
ciency or to create analog intellectual properties (IPs). To
our knowledge, variation-aware analog behavioral models have
not been widely used yet. Following previous research results
[6], [7], we treat the coefficients of a behavioral model as a
multi-dimensional random variable (RV). Supporting arbitrary
correlations and distribution shapes, in particular non-Gaussian
parameters, we describe this RV combining rank correlation
coefficients and generalized lambda distributions (GLDs).

In the remainder of this article, Sec. II briefly introduces
analog behavioral models and multi-dimensional RVs, and
Sec. III presents our modeling approach. In Sec. IV, we
demonstrate the accuracy and efficiency of our modeling ap-
proach using a voltage divider and a bandgap voltage reference
as application scenarios. Including some directions for future
research, Sec. V concludes this article.

II. THEORETICAL BACKGROUND

A. Analog Behavioral Modeling

A circuit simulator builds a circuit matrix applying Kirch-
hoff’s laws and device model equations. Solving this matrix
determines the circuit response to predefined input signals.
The potentially large number of active and passive devices

in analog circuits can cause a considerable computational
effort. Analog behavioral models of circuit sub-components,
which are usually written in Verilog-A [8], are an approach
to potentially significantly reduce this effort [3]. Instead of
matrices from circuit-level representation, they abstract the
component behavior by equations that connect pin voltages
and currents and can be handled by standard circuit simulators.
For example, in Sec. IV-B, (6) and (7) well describe the
behavior of the bandgap voltage reference circuit in Fig. 8.

To meet the requirements of recent semiconductor technolo-
gies, analog behavioral models have to take variability into
account, i.e. they need to capture the variability information
available in PDKs. These non-idealities have been considered
in variation-aware performance models, such as in [9], or in
single-device Verilog-A model considering physical variations
[10], but, to our knowledge, not in analog behavioral models.

B. Multi-Dimensional Random Variables

The values of RVs occur according to a probability dis-
tribution [11]. A one-dimensional RV A is described by
its probability density function (PDF) ϕA (x), its cumulative
distribution function (CDF) φA (x)=

∫ x

−∞ ϕA (x) dx, or its
quantile function φ−1A (.). A k-dimensional RV A consists of
random components Ai. It can, for instance, be characterized
by [12] (i) its rank correlation matrix R and (ii) the quantile
functions φ−1Ai

(.) of its random components Ai.
In case of such a description, random samples from the RV

A can be generated with a 4-step approach [12]: (i) element-
wise transformation of the matrix R into a matrix C with
cij =2·sin (π/6·rij); (ii) random sample generation from a
Gaussian RV Z with mean vector µ=0 and covariance ma-
trix C; (iii) component-wise transformation of Gaussian into
uniform components, ui =Φ (zi) with the standard Gaussian
CDF Φ(.); and (iv) component-wise mapping to the marginal
distributions applying their quantile functions, xi =φ−1Ai (ui).

In this paper, we apply a probabilistic behavioral model-
ing approach based on these principles and demonstrate its
implementation into a commercial circuit simulator.

III. PROBABILISTIC BEHAVIORAL MODELING APPROACH

We assume to have an analog behavioral model for a
particular circuitry with k coefficients Ai. For each sample in a
Monte Carlo (MC) study, these coefficients can be determined
so that sample data for the model coefficients, i.e. sample data
for the RV A, is available. To derive a probabilistic model,
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Fig. 1. Voltage divider; (a) test bench; (b) circuit-level schematic

we need to determine the rank correlation matrix of this RV
and its marginal distributions based on the empirical data.

The (k×k) rank correlation matrix R is directly from
derived by Spearman’s rank correlation coefficients [11]

rij = rji = 1−
6 ·

N∑
k=1

d2ij,k

N3 −N
for i 6= j; 1 ≤ i, j ≤ m. (1)

In (1), dij,k is the rank difference of the kth observations of
Ai and Aj, i.e. the difference in their positions in the ordered
samples. Note that rii =1.

Additionally, we approximate the marginal distributions by
GLDs defined by the quantile functions [13]

Ai = φ−1Ai (u) = λAi,1 +

uλAi,3−1
λAi,3

− (1−u)λAi,4−1
λAi,4

λAi,2
(2)

with 0≤u≤1. The four distribution parameters for location
(λ1,Ai), scale (λ2,Ai), and shape (λ3,Ai, λ4,Ai), allow to ap-
proximate a variety of distribution shapes, including Gaussian
and non-Gaussian distributions.

Applying these basics, we transfer previous research results
for transistor compact models and standard cell models [6],
[7] to variation-aware analog behavioral models. We perform
all calculations in the statistics software R [14] and apply a
dedicated package for GLD processing [15].

IV. APPLICATION SCENARIOS

We apply the probabilistic analog behavioral modeling
approach to two scenarios: a voltage divider and a bandgap
voltage reference. While the first scenario is intended to outline
the basic procedure, the second scenario demonstrates its
capabilities in terms of accuracy and efficiency.

A. Voltage Divider

For a simple voltage divider composed of the resistors R1

and R2 with the test bench and circuit-level schematic in
Fig. 1, Kirchhoff’s laws can be applied to obtain the equations

Vout =
Vdd

1 + R1

R2

− Iref
1
R1

+ 1
R2

=
Vdd
A1
− Iref

A2
and (3)

Idd =
Vdd

R1 +R2
+

Iref

1 + R1

R2

=
Vdd
A3

+
Iref
A1

(4)

relating the output voltage Vout and the current consumption
Idd to the supply voltage Vdd and the output current Iref .
The model coefficients A1 =1+R1/R2, A2 =1/R1+1/R2,
and A3 =R1+R2 can be directly calculated in this scenario.

‘include "constants.vams"
‘include "disciplines.vams"
module voltage_divider(VDD,VSS,OUT);
// pins
inout VDD, VSS, OUT;
electrical VDD, VSS, OUT;
// default model params: R1=1K; R2=2K;
parameter a1=1.5, a2=1.5m, a3=3.0K;
// inits
real v_dd, i_out;
// model equations
analog begin
v_dd=V(VDD,VSS); i_out=I(VSS,OUT);
V(OUT,VSS) <+ v_dd/a1 - i_out/a2;
I(VDD,VSS) <+ v_dd/a3 + i_out/a1;

end
endmodule

Fig. 2. Verilog-A analog behavioral voltage divider model

Ix (1 2 3) voltage_divider [a1=<val1> a2=<val2> a3=<val3>]

Fig. 3. Instantiation of behavioral voltage divider model for simulations
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Fig. 4. Joint distribution of resistors R1 and R2
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Fig. 5. PDFs of model parameters A1, A2, and A3

Alternatively, they can be determined during characterization
from output voltages Vout and current consumptions Idd at
different supply voltages Vdd and output currents Iref . Fig. 2
provides a Verilog-A [8] implementation of (3) and (4); Fig. 3
provides the model instantiation in Spectre [16] syntax.

Due to process variations and atomic-level fluctuations, we
assume that the resistors R1 and R2 to vary following corre-
lated Gaussian distributions with the mean values µR1 =1 kΩ
and µR2 =2 kΩ, the standard deviations σR1 =50 Ω and
σR2 =100 Ω, as well as their product-moment correlation
coefficient ρ

R1,R2
=0.5. Their histograms and scatter plot,

the inputs to circuit-level MC simulations, are depicted in
Fig. 4. For each MC sample for characterization, the model
coefficients Ai can be determined. Their empirical histograms
from 1000 samples are illustrated in Fig. 5.

The coefficients A1, A2, and A3 can be modeled
as a three-dimensional RV A applying the approach in
Sec. III. From the characterization data, the GLD param-
eters λA1,1 =0.67, λA1,2 =58, λA1,3 =0.076, λA1,4 =0.092;



////// user-defined functions
// approximation of standard Gaussian CDF
real pnorm ( real z ) { // from [15]
return 0.5 + 0.5*sgn(z)*sqrt(1.0-exp(-0.626657*z*z))
}
// quantile function of GLD
real qgl ( real u, real l1, real l2,

real l3, real l4 ) {
return l1 + ( (pow(u,l3)-1)/l3 - (pow(1-u,l4)-1)/l4 ) / l2
}
////// parameter inits
parameters real z1=0 z2=0 z3=0
////// statistics section
statistics {
process {
vary z1 dist=gauss std=1 percent=no
vary z2 dist=gauss std=1 percent=no
vary z3 dist=gauss std=1 percent=no
}
correlate param=[z1 z2] cc=-0.285 // values from conversion
correlate param=[z1 z3] cc=-0.324 // of R in Eq. (5) as
correlate param=[z2 z3] cc=-0.803 // in Sec. II.B
}
////// conversion to model params
parameters u1=pnorm(z1)
parameters u2=pnorm(z2)
parameters u3=pnorm(z3)
parameters a1=qgl(u1, 1.5, 38, 0.21, 0.15)
parameters a2=qgl(u2, 1.5e-3, 2.8e4, 0.13, 0.026)
parameters a3=qgl(u3, 3e3, 0.013, 0.19, 0.12)

Fig. 6. Statistics section for voltage divider behavioral model; approximation
of standard Gaussian CDF (function pnorm) from [17]
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Fig. 7. Joint voltage divider performance parameter distributions (Vout and
Idd) from circuit-level simulations and behavioral model evaluations

λA2,1 =670, λA2,2 =0.027, λA2,3 =0.083, λA2,4 =0.12; and
λA3,1 =3.3E−4, λA3,2 =5.1E4, λA3,3 =0.31, λA3,4 =0.028
as well as the rank correlation matrix

R =

 1 −0.27 −0.32
−0.27 1 −0.79
−0.32 −0.79 1

 (5)

can be derived. In Fig. 5, the GLD approximations well
represent the sample data. For example in a statistics section
in Spectre syntax as in Fig. 6, the model statistics can be
implemented to obtain a variation-aware analog behavioral
voltage divider model. This model can be instantiated in a
netlist according to Fig. 3 replacing <vali> with ai.

For model validation, we compare MC evaluations of the be-
havioral model and circuit-level MC simulations at Vdd =5 V
and Vout =1 mA with 500 samples each. As illustrated in
Fig. 7, the PDFs and the scatter plots of the voltage divider
output voltage Vout and current consumption Idd do not differ.
Hence, the variation-aware behavioral model is electrically
equal to the circuit-level representation, which verifies our
modeling approach. Since the circuit consists of two linear
elements only and the behavioral model consists of two
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Fig. 8. Circuit-level schematic of the bandgap voltage reference

equations, behavioral modeling cannot be expected to improve
the computational efficiency in this scenario.

B. Bandgap Voltage Reference

Fig. 8 depicts a possible circuit implementation of a
bandgap voltage reference circuit. Due to its moderate com-
plexity, an appropriate behavioral model may indeed speed up
the circuit verification.

In a 0.35µm industrial technology, the equations

V ∗ref = A1+A2V
∗
dd+A3T

∗+A4 (T ∗)
2
+A5I

∗
ref+A6V

∗
ddT

∗ (6)

I∗dd = A7+A8V
∗
dd+A9T

∗+A10 (T ∗)
2 (7)

relate the reference voltage Vref and the current consumption
Idd to the supply voltage Vdd, the temperature T and the
output current Iref . Using relative parameters x∗=(x−x0) /x0

and ten coefficients Ai, (6) and (7) well trade off accuracy and
complexity at supply voltages Vdd∈ [3.0, 3.6] V, temperatures
T∈ [−40, 160] ◦C, and output currents Iref ∈ [1 nA, 1µA]. The
reference values Vref0 and Idd0 are obtained at Vdd0 =3.3 V,
T0 =27 ◦C, and Iref0 =100 nA. The coefficients Ai in (6) and
(7) are extracted from circuit-level simulations that observe
reference voltage Vref and current consumption Idd while
sweeping supply voltage Vdd, temperature T, and output
current Iref . Implemented in Verilog-A, (6) and (7) realize an
analog behavioral bandgap model.

With variability information from a PDK, the model ex-
traction can be repeated for each sample of a circuit-level MC
simulation. We evaluate 1000 samples to determine sample
data of the coefficients Ai. Shapiro-Wilk tests [11], [14] with
5 % confidence levels figure out that only the coefficients A1,
A3, and A4 are Gaussian while the others are not, justifying
the support of non-Gaussian distributions in our approach. To
model the coefficients Ai as a ten-dimensional RV A, we
compute the (10×10) rank correlation matrix R and map the
marginal distributions to GLDs. The PDFs and scatter plots
of selected coefficients in Fig. 9 demonstrate that the model
well captures the characterization data. It can be implemented
following the principles for the voltage divider in Fig. 6 to
yield a variation-aware analog behavioral bandgap model.

To validate our model, we run 1000-sample MC evalua-
tions of the circuit in Fig. 8 and the variation-aware analog
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Fig. 10. Example results of behavioral model evaluation for the bandgap

behavioral bandgap model. At various combinations of supply
voltages Vdd, temperatures T, and output currents Iref , we
observe the distributions of the reference voltage Vref and the
supply current Idd for both representations, see Fig. 10 for an
example. We compare these distributions with Kolmogorov-
Smirnov tests [11], [14] with 5 % confidence levels and cannot
observe significant differences. Hence, both circuit representa-
tions are electrically equal. The major benefit of the behavioral
bandgap model, however, is its efficiency. While the 1000-
sample circuit simulation for model validation takes 374 s, the
behavioral model evaluation finishes in 94 s, corresponding to
a 4X speed up without loss of accuracy.

It has to be noted that the model extraction based on circuit-
level simulations sweeping supply voltage Vdd, temperature
T, and output current Iref takes about 15 s per sample point,
creating a significant characterization effort for the 1000-
sample characterization used in this paper.

V. SUMMARY

Analog behavioral models allow handling the complexity in
analog circuit design and verification. However, to meet the
requirements of deeply scaled technologies, they need to be
enhanced to capture variability.

For this purpose, we propose and demonstrate a variation-
aware approach. The coefficients of an analog behavioral
model are treated as a multi-dimensional random variable
(RV), which is described combining rank correlation coeffi-
cients and generalized lambda distributions (GLDs) to capture
arbitrary correlations and various distribution shapes. We fur-
ther present how to implemented and access such a model
using Verilog-A and the Spectre circuit simulator. We confirm
the model accuracy in application scenarios and achieve a
4 X gain in efficiency evaluating a variation-aware behavioral
bandgap model compared with circuit-level simulations.

However, extracting the coefficients based on MC simu-
lations and subsequent modeling may require an immense
computational effort. Fine-tuned behavioral models with fewer
coefficients and smaller sample sizes may lead to short-term
improvements. Further research may include advanced model
extraction methods, correlation handling across multiple levels
of hierarchy and between different behavioral model instances,
or the integration of variation-aware behavioral models into
analog IP design flows, such as [2]. Nevertheless, we believe
that the proposed approach provides a step towards variability-
aware behavioral models of analog circuits.

ACKNOWLEDGEMENT

The research leading to these results has received fund-
ing from the European Union Seventh Framework Pro-
gramme (FP7/2007 - 2013) under grant agreement no. 318458
SUPERTHEME.

REFERENCES

[1] G. Gielen and R. Rutenbar, “Computer-aided design of analog and
mixed-signal integrated circuits,” Proceedings of the IEEE, vol. 88,
no. 12, pp. 1825–1854, Dec. 2000.

[2] T. Reich et al., “Design of a 12-bit cyclic RSD ADC sensor interface
IC using the intelligent analog IP library,” in ANALOG 2013, 2013.

[3] R. Vogelsong, “AMS Behavioral Modeling,” in Mixed-Signal Method-
ology Guide, J. Chen et al., Eds. San Jose, CA, USA: Cadence Design
Systems, Aug. 2012, ch. 3, pp. 25–70.

[4] J. Lorenz et al., “Simultaneous simulation of systematic and stochastic
process variations,” in International Conference on Simulation of Semi-
conductor Processes and Devices (SISPAD), Sep. 2014, pp. 289–292.

[5] X. Wang et al., “Variability-Aware Compact Model Strategy for 20-
nm Bulk MOSFETs,” in International Conference on Simulation of
Semiconductor Processes and Devices (SISPAD), Sep. 2014, pp. 293–
296.

[6] A. Lange et al., “A General Approach for Multivariate Statistical MOS-
FET Compact Modeling Preserving Correlations,” in Proc. European
Solid-State Device Research Conference (ESSDERC) ’11, Sep 2011, pp.
163–166.

[7] ——, “Probabilistic standard cell modeling considering non-Gaussian
parameters and correlations,” in Proc. Design, Automation and Test in
Europe (DATE) ’14, Mar. 2014.

[8] Verilog-AMS Language Reference Manual, Accellera Systems Initiative,
Inc., Napa, CA, USA, May 2014, Version 2.4.0.

[9] D. De Jonghe et al., “Advances in variation-aware modeling, verification,
and testing of analog ICs,” in Design, Automation & Test in Europe
(DATE), Mar. 2012, pp. 1615–1620.

[10] G. Giustolisi, R. Mita, and G. Palumbo, “Verilog-A modeling of SPAD
statistical phenomena,” in IEEE International Symposium on Circuits
and Systems (ISCAS), May 2011, pp. 773–776.

[11] B. Everitt, The Cambridge Dictionary of Statistics. Cambridge, UK:
Cambridge University Press, 2006, no. 3.

[12] P. Fackler, “Generating Correlated Multidimensional Variates,” [Online]
http://www4.ncsu.edu/∼pfackler/randcorr.ps, [Accessed: Jan. 18, 2012].

[13] R. King and H. MacGillivray, “Theory & Methods: A Starship
Estimation Method for the Generalized λ Distributions,” Australian &
New Zealand Journal of Statistics, vol. 41, no. 3, pp. 353–374, Sep.
1999. [Online]. Available: http://dx.doi.org/10.1111/1467-842X.00089

[14] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2014. [Online]. Available: http://www.R-project.org/

[15] R. King, B. Dean, and S. Klinke, gld: Estimation and use of the
generalised (Tukey) lambda distribution, 2014, R package version 2.2.1.
[Online]. Available: http://CRAN.R-project.org/package=gld

[16] Cadence Design Systems, Inc., “Spectre Circuit Simulator,”
http://www.cadence.com/products/rf/spectre circuit/pages/default.aspx.

[17] K. Aludaat and M. Alodat, “A Note on Approximating the Normal
Distribution Function,” Applied Mathematical Sciences, vol. 2, no. 9,
pp. 425–429, 2008.


