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Abstract—Recent research advances have revealed the com- the purpose of efficient storag®, can be in the form of a
putational secrecy of the compressed sensing (CS) paradigm block diagonal matrix, i.e.,
Perfect secrecy can also be achieved by normalizing the CS me

surement vector. However, these findings are established aral F, 0 ... 0
measurements while digital devices can only store measuremts 0 F, ... 0
at a finite precision. Based on the distribution of measuremats F= . . ) 2)
of natural images sensed by structurally random ensemble, a : : o
joint quantization and diffusion approach is proposed for these 0 0 ... Fy

real-valued measurements. In this way, a nonlinear cryptogphic —\hore, is an orthogonal matrix of siz8 x B. In summary,
diffusion is intrinsically imposed on the CS process and theverall

security level is thus enhanced. Security analyses show ththe .the compressgd SENsIng process using SR.M can be carried out
proposed scheme is able to resist known-plaintext attack vite the 1N three steps: pre-randomization of the signal to be sensed
original CS scheme without quantization cannot. Experimeral ~ Orthogonal transformation and down sampling.

results demonstrate that the reconstruction quality of ourscheme

X -~ When the measurement matdxis treated as a secret key,
is comparable to that of the original one.

it is reported in[[6] that unauthorized users cannot dechde t
Keywords—compressed sensing, quantization, image encryption, measurement vector because they do not know which random

diffusion, structurally random matrices. subspace the measurement vector is expressed. Thus CS can be
considered as possessing the property of a symmetric cipher
. INTRODUCTION Rachlin et al. proved that breaking a CS-based cipher by

systematically searching in the key space is computational
Compressed sensing (CS) has received much researaifeasible [T]. This finding was later extended to Shannon’s
attention in the past decade [1]-[3] since it samples a spargerfect secrecy by Bianchét al. through normalizing the
signal at a rate lower than that required by the traditiorals  ciphertext [8].
pling theorem. For a signat which can be represented fay L . . .
out of N significant components under a certain transformation However, the application of these findings in practical

W, the CS theory states thatcan be faithfully recovered from s_cenarios is hamp_ered since a) CS'based ciphers require one
its compressive sampled linear measuremgnts® - x under time-pad keys which lead to key delivery and management

the condition that the sensing matr — & - ¥ satisfies the Proplems; b) the achieved secrecy is based on real-valued
restricted isometry property (RIF)I[4] measurements but digital devices can only store finiteigimt

numbers. These motivate us to investigate the security- char
In the CS process, Gaussian or Bernoulli matrices arecteristics of CS with quantized measurements. Making use
commonly employed as the measurement matrix due to thedf the distribution of measurements of natural images, we
universality and optimal measurement performance. When CSuggest quantizing the measurement vector to integersein th
is used to sample natural images, new issues, such as fasterval [0,255] using a first-orderCA quantizer [[9]. The
computation and efficient storage, arise. Structurallydeam  similarities between error feedback mechanism of the dgremt
matrices (SRM) are potential candidates to meet these neand cryptographic diffusion primitive inspire us to design
requirements[[5]. In general, CS employing SRM can bgoint quantization and diffusion approach for the measuim
formulated as vector. With the intrinsic diffusion property, the resista
N to known-plaintext attack (KPA) of CS-based cipher is thus
® = MDFR’ (1) improved. Simulation results justify that the reconstiwmct

L . . . quality of the proposed approach is comparable to the aigin
whereR is either a random permutation matrix or a dlagonaICS without quantization. To the best of our knowledge, this

matrix whose diagonal elements are independent and idemil- : - : ;
o = 2 ! s the first study of embedding security measures in the
cally distributed (i.i.d.) Bernoulli variable& is an orthogonal r(]quantization process of CS.

matrix which can be chosen from fast transformations suc
as DFT, DCT or WHT, and is a down sampling operator The rest of this paper is organized as follows. $dc. Il is an
which selectsM measurements out df ones uniformly. For introduction of our joint quantization and diffusion appoh
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for CS measurements. S€c] Il presents a secure and fast ®@Bereround(a) returns the nearest integer @f
scheme for natural images based on the proposed approach.
Security analyses and simulation results can be found in o ) ;
Sec.[IV while other possible applications of the proposeoquantlzatlon error at the-th step is updated by the error

scheme are discussed in SE@. V. The last section conclug@h the previous step using Ed.l (4). This updated error will
our work. Influence the quantization process of the next elemgnt

of the measurement vector, as governed by Eh. (3). In this
way, thei-th quantized value; is affected by the initial error

ug through an accumulated manner, which possesses certain
intrinsic similarity with the cryptographic diffusion pitive.

As observed from Eqs[X1) andl(2), each measuremerRUppose that a key streaW = {v;}}%, has been generated,
can be considered as a weighted sumBfrandom pixels. @ typical diffusion approach using nonlinear modular addit
According to the Central Limit Theorem (CLT), the samplescan be expressed as
follow the Gaussian distribution asymptotically. To explthis o =q+tvtq (5)
phenomenon in more detail, we carry out some experiments . . L )
using different block sizes and orthogonal transformation Wheregg = v is the initial velue and+b = (a+b) mod 256.
Fig.[ is a plot of the quantities of input samples vs that of Vith the help of the valug;_, and the key stream, theth
standard normal, usirigena as the test image. It shows that the quantized mea_surgmqu-t can be decrypted by the following
measurements obtained by sensing a natural image using theverse operations:
structurally random DCT matrix behave like Gaussian random G =q - vi = q_q, (6)
variables. More simulations have been performed to sample, .. . , _ (a — b+ 256) mod 256. As a result, a joint

other test images using different transform matrices andkbl quantization and diffusion approach for the CS measuresnent

si_zes. The distributions of the measurements are depiated kan be derived from Eq<](3LI (4] (5) aidl (6). The process can
Figs.[2(a)-(d). be expressed as

From the above description, it is easy to find that the

Il. A JOINT QUANTIZATION AND DIFFUSION APPROACH
FOR MEASUREMENTS OFNATURAL |IMAGES

QQ Plot of Sample Data versus Standard Normal

250 q;k = Q(ui—l ‘Hh) —i—Ui —i_qgk—h
2000 P o (ui_l + yz) — q; if 0< qi < 255,
ol i = u;—1 otherwise

It should be noticed thag; has a uniform distribution rather
than a Guassian one, as caused by the randomness of the key
stream{v; }£,. Moreover, the quantization error made in the
previous step still accounts for the quantization of thetnex
measurement. Thus, all the advantages of the origihal
quantization method [9] are reserved.
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Ill. FAST COMPRESSEDSENSING OFNATURAL IMAGES
WITH SECRECY
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L Before describing the details of a fast CS scheme with
e e L secrecy for natural images, we first address the problems of

constructing the permutation matriR and the down sam-

pling operatorD to form the SRM as well as generating

Fig. 1. QQ plot of measurements obtained using structuralidom DCT  the key streamV for quantization and diffusion. Without
{gzttfi'xm;‘”g‘ igg%k 5'22%3'_: 32 and sampling rat&/t = M/N = 0.5. The  |oss of generality, we assume that a cryptographic random
9 x ena Image- number generator (RNG) which can produce random numbers

Inspired by the3-sigma rule of Gaussian variables, i.e., uniformly in the interval[1, N] is available. Asttated in_[10,
about99.7% of values drawn from a Gaussian distribution are S€C- 5-3], a random permutation sequeficg)};=, of the set

i)
&
S

&

within three standard deviations from the mean, we propwse tt!:2:3,---, N —1,N} can be generated at a complexity of
quantize these measurements to the rdfgess| using a first- ~ O(XV) by the following method:
orderXA quantizer. The quantization process can be expressed e  Step 1. Initializer(i) =i for all i € {1,2,--- , N}.
as _

G = Oluii + ), ®) e Step 2. Set = 1.

(wi1 +yi) —q if 0 < q; <255, 4 e Step 3. Generate a random numbeg [i, N| using

i u;_1 otherwise 4) the RNG.
whereu, is the initial quantization errorg = {g;}, is the e Step 4. Swap(i) and7(j).
quantized output of the measurement vegter {y;}£, and e Step5. Ifi < N, leti —i+1 and turn to Step 3

Q(-) is a8-bit quantizer governed by otherwise, returr{r(i)} Y ,.
round(a) + 127 if —127.5 < a < 128.5,
{ 0 if a<—127.5, Given a 128-bit secret keyK as the seed of the RNG,

Q(a) =
255 if a > 128.5, two sequences7 (i)}, and {r(j) ;=1 are produced by
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Fig. 2. Distribution of measurements obtained from sangpbeveral test images at different settingsR( = 0.8): (a) Cameraman, DCT with block size
B = 32; (b) House, DCT with block sizeB = 64; (c) Peppers, WHT with block size B = 128; (d) Baboon, DFT with block sizeB = 256.

running the RNG for(NV + M) times from the seed. Then tackle the following optimization problein

;hrg g:{gﬁfﬁr:;odn@atriﬁ and the down sampling matrik min |1 subject to]jq — ®Ws||? < e, @)
v = (0,0, 1,0 0) and an approximate version a&f can be determined bg =
3 b b) b 1) b) b W . S.

d] :(0707"'71T(j)707"'70)7
wherei € [1,N], j € [1,M], r; andd; denote thei-th row IV.SECURITY ANALYSES AND NUMERICAL SIMULATIONS

of R and thej-th row of D, respectively. Similarly, run the A known-Plaintext Attack

RNG for a further of(A + 1) times and producér (k) } 4",

the key streanV = {v;}}4, for diffusing the measurements It is widely recognized that the sensitivity to changes in

is obtained by setting; = 7(i + 1) mod 256. plaintext plays a significant role in determining a cipher’s

, ) security level, especially its resistance to plaintexdaks. The

Making use of the above notations, the proposed fast C@ncryption process of a CS-based cipher without quantizati

method with secrecy for & x W (N = H x W) natural s pased on random projection, which is linear. Therefdre, i

image P contains the following operation steps: is not surprise that the ciphertexts or measurements are not

sensitive to the changes in plaintext. Based on this observa

an attacker can carry out known-plaintext attack on the non-

guantized CS, which can be expressed as

y=® -x=dVs.

e Initialization: ConstructR, D andV from the keyK
as described above, then streéhto a vectorx by
stacking its columns.

e Prerandomization: Randomizex using the permuta-

tion matrix R. The procedures of the attack are described as follows:

e Orthogonal Transformation: Apply a chosen fast e Check whethern >> N, wheren denotes the number
transform, such as DCT or DFT, to the output of the of known plaintext and ciphertext pairs the attacker
previous step. possesses.

e Randomly choose a natural ima@e whose vector-
ized versionx’ is linearly independent of all thg—1
existing known plain-images.

e Down Sampling and Normalization: Select M real
measurementg = {y;}, out of N ones uniformly
usingD and normalize the result.

— e - Collect all the selected known-images and the corre-
 Quantization and Diffuson: Apply the joint sponding ciphertexts iff = N. Then denoteX =
quantization and diffusion approach tg with IxL, x2 XN andY = [y };2 oy

the help of the key strearW. XXy
Now, it is clear thatank(X) = N and an approximate version

The whole scheme can be expressed as of ® can be obtained byp =Y - X L.
q“ = QD(® - x) = QD(4 /EDFR-x), _In the CS process employing our joint quantization and
M diffusion, the original ciphertext, which is linearly dependent

where QD(-) is the joint quantization and diffusion operation On the plain-image, is converted to a quantized and diffused

described in Se€]ll. vectorq*, which is uniformly distributed if0, 255]. Thus, the
o _ linear relationship between the plain-image and the cigfer
To reconstruct the original imagP, or equivalentlyx, s disturbed and the KPA attack described above becomes

one should first obtain the quantization vecigrfrom the ineffective.
inverse diffusion equatior(6) using the key stredm Then,

the measurement matrix used for sampling is exactly retdev B. Reconstruction
by the decoder usingl. Finally, the gradient projection for

: : : Different from the uniform quantization proposed in[[12],
sparse reconstruction (GPSR) algoritim![11] is employed t(\)/ve map the measurements whose values are outside the

lwhenR is a diagonal matrix whose dia_gonaL elements are i.i.d. @dlin 2A simple trick is employed to handle the saturated quantized
variables, we can set; = (0,0, - - - ,(—I)Z(Z) mod2 g ... 0) instead. measurements. We will introduce it in SEc._1V-B.



interval (—127.5,128.5] to 0 or 255, as described in SeCl Il.
Taking this effect into consideration, we simply rejecttbtite
positively and the negatively saturated measurementsgluri
reconstruction. In this way, the optimization problef@ (7)
becomes

min ||s||; subject to||q — ®'¥s|3 < e,

where ®' is composed of all the rows ob with quantized
measurements; satisfying0 < ¢; < 255.

Fig. 4.
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A block diagram showing the flow of compressing an pited

image.

The performance of the joint quantization and diffusion
approach for CS measurements is depicted in [Hig. 3, where

the 256 x 256 Lena image is compressively sampled by the realize the goal of fast compressed image sensing withegcre
block DCT matrix at a block sizé&8 = 32. The benchmark structurally random matrix is employed for fast computatio

for comparison is non-quantized CS using SRM under thénd the obtained measurements are concealed by the proposed
same setting [5]. It is clear in Fif] 3 that the performance gajOint guantization and diffusion mechanism. Theoretiazla
between the quantized and the non-quantized CS is acceptatyises and experimental results have demonstrated that the ne
and the average loss in peak signal-to-noise ratio (PSNB) duscheme can resist known-plaintext attack and its recoctitru

to quantization is around.6dB.

quality is comparable to that of CS without quantizationr Ou

approach can be extended to compress encrypted images.
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Fig. 3. Reconstruction performance of the quantized anchtmequantized
CS using SRM. [8]

V. EXTENSION TOOTHER APPLICATIONS ]

We have studied the security characteristics of the prapose

CS process with quantization by treating it as a symmetric[lo]
cipher. Its feasibility for compressing encrypted images i
secure signal processing applicationl[18]][14] will be lexed [11]

here.

As shown in Fig[¥, a plain-image is pre-randomized
with R, which can be regarded as a weak or lightweight;;
encryption ofx performed by a user with limited computing
power. Then a service provider performs tinansformation,
down sampling and joint quantization and diffusion processes
on the ciphertexk’ sequentially. Referring to Sdcl Il, it is easy
to conclude that the compression ratio (CR) is exactly etpual
SR. Finally, authorized users can perform joint decomjoass [14]
and decryption on the quantized and diffused measurement
vectorq* to reconstruct an approximated versionxof

[13]

VI.CONCLUSIONS

A joint quantization and diffusion approach has been pro-
posed for the block compressed sensing of natural images. To

REFERENCES

E. J. Candes and T. Tao, “Decoding by linear programrhinBEE
Trans. Inf. Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005.

D. L. Donoho, “Compressed sensingEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289-1306, Apr. 2006.

R. Baraniuk, “Compressive sensing/EEE Sgnal Process. Mag.,
vol. 24, no. 4, pp. 118-121, Jul. 2007.

R. Baraniuk, M. Davenport, R. Devore, and M. Wakin, ‘A gile
proof of the restricted isometry property for random mafsit Constr.
Approx., vol. 28, no. 3, pp. 253-263, Dec. 2008.

T. T. Do, L. Gan, N. H. Nguyen, and T. Tran, “Fast and effitie
compressive sensing using structurally random matrid&EE Trans.
Sgnal Process., vol. 60, no. 1, pp. 139-154, Jan. 2012.

E. J. Candes and T. Tao, “Near-optimal signal recoveomfrrandom
projections: Universal encoding strategied®EE Trans. Inf. Theory,
vol. 52, no. 12, pp. 5406-5425, Dec. 2006.

Y. Rachlin and D. Baron, “The secrecy of compressed sensi
measurements,” ifProc. 46th Annu. Allerton Conf. Commun. Contr.
Comput., 2008, pp. 813-817.

T. Bianchi, V. Bioglio, and E. Magli, “On the security oandom linear
measurements,” iRroc. |EEE Int. Conf. Acoust. Speech Signal Process.
(ICASSP), 2014, pp. 4020-4024.

J.-M. Feng and F. Krahmer, “An RIP-based approach Xa\
guantization for compressed sensindEEE Sgnal Processing Letters,
vol. 21, no. 11, pp. 1351-1355, 2014.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Sthitroduction
to Algorithms.  MIT Press, 3rd edition, 2009.

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradigmojection
for sparse reconstruction: Application to compressedisgrand other
inverse problems,TEEE Journal of Selected Topics in Sgnal Process-

ing, vol. 1, no. 4, pp. 586-597, 2007.

H. Liu, B. Song, F. Tian, and H. Qin, “Joint sampling raded bit-
depth optimization in compressive video samplingEE Transactions

on Multimedia, vol. 16, no. 6, pp. 1549-1562, 2014.

A. A. Kumar and A. Makur, “Lossy compression of encrygptenage
by compressive sensing technique,’Rnoc. of IEEE Region 10 Conf.,
2009, pp. 1-5.

X. Zhang, Y. Ren, G. Feng, and Z. Qian, “Compressing guted
image using compressive sensing,’Hroc. 7th Int. Conf. on Intelligent
Information Hiding and Multimedia Signal Process. (IIH-MSP), 2011,
pp. 222-225.



	I Introduction
	II A Joint Quantization and Diffusion Approach for Measurements of Natural Images
	III  Fast Compressed Sensing of Natural Images with Secrecy
	IV Security Analyses and Numerical Simulations
	IV-A Known-Plaintext Attack
	IV-B Reconstruction

	V Extension to Other Applications
	VI Conclusions
	References

