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Abstract—Recent research advances have revealed the com-
putational secrecy of the compressed sensing (CS) paradigm.
Perfect secrecy can also be achieved by normalizing the CS mea-
surement vector. However, these findings are established onreal
measurements while digital devices can only store measurements
at a finite precision. Based on the distribution of measurements
of natural images sensed by structurally random ensemble, a
joint quantization and diffusion approach is proposed for these
real-valued measurements. In this way, a nonlinear cryptographic
diffusion is intrinsically imposed on the CS process and theoverall
security level is thus enhanced. Security analyses show that the
proposed scheme is able to resist known-plaintext attack while the
original CS scheme without quantization cannot. Experimental
results demonstrate that the reconstruction quality of ourscheme
is comparable to that of the original one.

Keywords—compressed sensing, quantization, image encryption,
diffusion, structurally random matrices.

I. I NTRODUCTION

Compressed sensing (CS) has received much research
attention in the past decade [1]–[3] since it samples a sparse
signal at a rate lower than that required by the traditional sam-
pling theorem. For a signalx which can be represented byk
out ofN significant components under a certain transformation
Ψ, the CS theory states thatx can be faithfully recovered from
its compressive sampled linear measurementsy = Φ ·x under
the condition that the sensing matrixA = Φ ·Ψ satisfies the
restricted isometry property (RIP) [4].

In the CS process, Gaussian or Bernoulli matrices are
commonly employed as the measurement matrix due to their
universality and optimal measurement performance. When CS
is used to sample natural images, new issues, such as fast
computation and efficient storage, arise. Structurally random
matrices (SRM) are potential candidates to meet these new
requirements [5]. In general, CS employing SRM can be
formulated as

Φ =

√

N

M
DFR, (1)

whereR is either a random permutation matrix or a diagonal
matrix whose diagonal elements are independent and identi-
cally distributed (i.i.d.) Bernoulli variables,F is an orthogonal
matrix which can be chosen from fast transformations such
as DFT, DCT or WHT, andD is a down sampling operator
which selectsM measurements out ofN ones uniformly. For

the purpose of efficient storage,F can be in the form of a
block diagonal matrix, i.e.,

F =









Fb 0 . . . 0
0 Fb . . . 0
...

...
. . .

...
0 0 . . . Fb









, (2)

whereFb is an orthogonal matrix of sizeB×B. In summary,
the compressed sensing process using SRM can be carried out
in three steps: pre-randomization of the signal to be sensed;
orthogonal transformation and down sampling.

When the measurement matrixΦ is treated as a secret key,
it is reported in [6] that unauthorized users cannot decode the
measurement vector because they do not know which random
subspace the measurement vector is expressed. Thus CS can be
considered as possessing the property of a symmetric cipher.
Rachlin et al. proved that breaking a CS-based cipher by
systematically searching in the key space is computational
infeasible [7]. This finding was later extended to Shannon’s
perfect secrecy by Bianchiet al. through normalizing the
ciphertext [8].

However, the application of these findings in practical
scenarios is hampered since a) CS-based ciphers require one-
time-pad keys which lead to key delivery and management
problems; b) the achieved secrecy is based on real-valued
measurements but digital devices can only store finite-precision
numbers. These motivate us to investigate the security char-
acteristics of CS with quantized measurements. Making use
of the distribution of measurements of natural images, we
suggest quantizing the measurement vector to integers in the
interval [0, 255] using a first-orderΣ∆ quantizer [9]. The
similarities between error feedback mechanism of the quantizer
and cryptographic diffusion primitive inspire us to designa
joint quantization and diffusion approach for the measurement
vector. With the intrinsic diffusion property, the resistance
to known-plaintext attack (KPA) of CS-based cipher is thus
improved. Simulation results justify that the reconstruction
quality of the proposed approach is comparable to the original
CS without quantization. To the best of our knowledge, this
is the first study of embedding security measures in the
quantization process of CS.

The rest of this paper is organized as follows. Sec. II is an
introduction of our joint quantization and diffusion approach

http://arxiv.org/abs/1411.6079v1


for CS measurements. Sec. III presents a secure and fast CS
scheme for natural images based on the proposed approach.
Security analyses and simulation results can be found in
Sec. IV while other possible applications of the proposed
scheme are discussed in Sec. V. The last section concludes
our work.

II. A JOINT QUANTIZATION AND DIFFUSION APPROACH
FOR MEASUREMENTS OFNATURAL IMAGES

As observed from Eqs. (1) and (2), each measurement
can be considered as a weighted sum ofB random pixels.
According to the Central Limit Theorem (CLT), the samples
follow the Gaussian distribution asymptotically. To explain this
phenomenon in more detail, we carry out some experiments
using different block sizes and orthogonal transformations.
Fig. 1 is a plot of the quantities of input samples vs that of
standard normal, usingLena as the test image. It shows that the
measurements obtained by sensing a natural image using the
structurally random DCT matrix behave like Gaussian random
variables. More simulations have been performed to sample
other test images using different transform matrices and block
sizes. The distributions of the measurements are depicted in
Figs. 2(a)-(d).

Fig. 1. QQ plot of measurements obtained using structurallyrandom DCT
matrix with block sizeB = 32 and sampling rateSR = M/N = 0.5. The
test image is256× 256 Lena image.

Inspired by the3-sigma rule of Gaussian variables, i.e.,
about99.7% of values drawn from a Gaussian distribution are
within three standard deviations from the mean, we propose to
quantize these measurements to the range[0, 255] using a first-
orderΣ∆ quantizer. The quantization process can be expressed
as

qi = Q(ui−1 + yi), (3)

ui =

{

(ui−1 + yi)− qi if 0 < qi < 255,
ui−1 otherwise, (4)

whereu0 is the initial quantization error,q = {qi}
M
i=1 is the

quantized output of the measurement vectory = {yi}
M
i=1 and

Q(·) is a 8-bit quantizer governed by

Q(a) =

{

round(a) + 127 if − 127.5 ≤ a < 128.5,
0 if a < −127.5,

255 if a ≥ 128.5,

whereround(a) returns the nearest integer ofa.

From the above description, it is easy to find that the
quantization error at thei-th step is updated by the error
at the previous step using Eq. (4). This updated error will
influence the quantization process of the next elementyi+1

of the measurement vector, as governed by Eq. (3). In this
way, thei-th quantized valueqi is affected by the initial error
u0 through an accumulated manner, which possesses certain
intrinsic similarity with the cryptographic diffusion primitive.
Suppose that a key streamV = {vi}

M
i=0 has been generated,

a typical diffusion approach using nonlinear modular addition
can be expressed as

q∗i = qi ∔ vi ∔ q∗i−1, (5)

whereq∗0 = v0 is the initial value anda∔b = (a+b) mod 256.
With the help of the valueq∗i−1 and the key stream, thei-th
quantized measurementqi can be decrypted by the following
reverse operations:

qi = q∗i
.− vi

.− q∗i−1, (6)

wherea .− b = (a − b + 256) mod 256. As a result, a joint
quantization and diffusion approach for the CS measurements
can be derived from Eqs. (3), (4), (5) and (6). The process can
be expressed as

q∗i = Q(ui−1 + yi)∔ vi ∔ q∗i−1,

ui =

{

(ui−1 + yi)− qi if 0 < qi < 255,
ui−1 otherwise,

It should be noticed thatq∗i has a uniform distribution rather
than a Guassian one, as caused by the randomness of the key
stream{vi}

M
i=0. Moreover, the quantization error made in the

previous step still accounts for the quantization of the next
measurement. Thus, all the advantages of the originalΣ∆
quantization method [9] are reserved.

III. FAST COMPRESSEDSENSING OFNATURAL IMAGES
WITH SECRECY

Before describing the details of a fast CS scheme with
secrecy for natural images, we first address the problems of
constructing the permutation matrixR and the down sam-
pling operatorD to form the SRM as well as generating
the key streamV for quantization and diffusion. Without
loss of generality, we assume that a cryptographic random
number generator (RNG) which can produce random numbers
uniformly in the interval[1, N ] is available. As stated in [10,
Sec. 5.3], a random permutation sequence{τ(i)}Ni=1 of the set
{1, 2, 3, · · · , N − 1, N} can be generated at a complexity of
O(N) by the following method:

• Step 1. Initializeτ(i) = i for all i ∈ {1, 2, · · · , N}.

• Step 2. Seti = 1.

• Step 3. Generate a random numberj ∈ [i, N ] using
the RNG.

• Step 4. Swapτ(i) andτ(j).

• Step 5. If i < N , let i = i + 1 and turn to Step 3;
otherwise, return{τ(i)}Ni=1.

Given a 128-bit secret keyK as the seed of the RNG,
two sequences{τ(i)}Ni=1 and {τ(j)}Mj=1 are produced by



(a) (b) (c) (d)

Fig. 2. Distribution of measurements obtained from sampling several test images at different settings (SR = 0.8): (a) Cameraman, DCT with block size
B = 32; (b) House, DCT with block sizeB = 64; (c) Peppers, WHT with block sizeB = 128; (d) Baboon, DFT with block sizeB = 256.

running the RNG for(N + M) times from the seed. Then
the permutation matrixR and the down sampling matrixD
are determined by1

ri = (0, 0, · · · , 1τ(i), 0, · · · , 0),

dj = (0, 0, · · · , 1τ(j), 0, · · · , 0),

where i ∈ [1, N ], j ∈ [1,M ], ri anddj denote thei-th row
of R and thej-th row of D, respectively. Similarly, run the
RNG for a further of(M +1) times and produce{τ(k)}M+1

k=1 ,
the key streamV = {vi}

M
i=0 for diffusing the measurements

is obtained by settingvi = τ(i + 1) mod 256.

Making use of the above notations, the proposed fast CS
method with secrecy for aH × W (N = H × W ) natural
imageP contains the following operation steps:

• Initialization: ConstructR, D andV from the keyK
as described above, then stretchP to a vectorx by
stacking its columns.

• Pre-randomization: Randomizex using the permuta-
tion matrixR.

• Orthogonal Transformation: Apply a chosen fast
transform, such as DCT or DFT, to the output of the
previous step.

• Down Sampling and Normalization: SelectM real
measurementsy = {yi}

M
i=1 out of N ones uniformly

usingD and normalize the result.

• Quantization and Diffusion: Apply the joint
quantization and diffusion approach toy with
the help of the key streamV.

The whole scheme can be expressed as

q∗ = QD(Φ · x) = QD(

√

N

M
DFR · x),

whereQD(·) is the joint quantization and diffusion operation
described in Sec. II.

To reconstruct the original imageP, or equivalentlyx,
one should first obtain the quantization vectorq from the
inverse diffusion equation (6) using the key streamV. Then,
the measurement matrix used for sampling is exactly retrieved
by the decoder usingK. Finally, the gradient projection for
sparse reconstruction (GPSR) algorithm [11] is employed to

1WhenR is a diagonal matrix whose diagonal elements are i.i.d. Bernoulli
variables, we can setri = (0, 0, · · · , (−1)

τ(i) mod 2
i

, 0, · · · , 0) instead.

tackle the following optimization problem2

min ‖s‖1 subject to‖q−ΦΨs‖22 < ε, (7)

and an approximate version ofx can be determined bŷx =
Ψ · s.

IV.SECURITY ANALYSES AND NUMERICAL SIMULATIONS

A. Known-Plaintext Attack

It is widely recognized that the sensitivity to changes in
plaintext plays a significant role in determining a cipher’s
security level, especially its resistance to plaintext attacks. The
encryption process of a CS-based cipher without quantization
is based on random projection, which is linear. Therefore, it
is not surprise that the ciphertexts or measurements are not
sensitive to the changes in plaintext. Based on this observation,
an attacker can carry out known-plaintext attack on the non-
quantized CS, which can be expressed as

y = Φ · x = ΦΨ · s.

The procedures of the attack are described as follows:

• Check whethern >> N , wheren denotes the number
of known plaintext and ciphertext pairs the attacker
possesses.

• Randomly choose a natural imagePj whose vector-
ized versionxj is linearly independent of all thej−1
existing known plain-images.

• Collect all the selected known-images and the corre-
sponding ciphertexts ifj = N . Then denoteX =
[x1,x2, · · · ,xN ] andY = [y1,y2, · · · ,yN ].

Now, it is clear thatrank(X) = N and an approximate version
of Φ can be obtained bŷΦ = Y ·X−1.

In the CS process employing our joint quantization and
diffusion, the original ciphertexty, which is linearly dependent
on the plain-image, is converted to a quantized and diffused
vectorq∗, which is uniformly distributed in[0, 255]. Thus, the
linear relationship between the plain-image and the ciphertext
is disturbed and the KPA attack described above becomes
ineffective.

B. Reconstruction

Different from the uniform quantization proposed in [12],
we map the measurements whose values are outside the

2A simple trick is employed to handle the saturated quantized
measurements. We will introduce it in Sec. IV-B.



interval (−127.5, 128.5] to 0 or 255, as described in Sec. II.
Taking this effect into consideration, we simply reject both the
positively and the negatively saturated measurements during
reconstruction. In this way, the optimization problem (7)
becomes

min ‖s‖1 subject to‖q−Φ′Ψs‖22 < ε,

whereΦ′ is composed of all the rows ofΦ with quantized
measurementsqi satisfying0 < qi < 255.

The performance of the joint quantization and diffusion
approach for CS measurements is depicted in Fig. 3, where
the 256 × 256 Lena image is compressively sampled by the
block DCT matrix at a block sizeB = 32. The benchmark
for comparison is non-quantized CS using SRM under the
same setting [5]. It is clear in Fig. 3 that the performance gap
between the quantized and the non-quantized CS is acceptable
and the average loss in peak signal-to-noise ratio (PSNR) due
to quantization is around0.6dB.

Fig. 3. Reconstruction performance of the quantized and thenon-quantized
CS using SRM.

V. EXTENSION TO OTHER APPLICATIONS

We have studied the security characteristics of the proposed
CS process with quantization by treating it as a symmetric
cipher. Its feasibility for compressing encrypted images in
secure signal processing application [13], [14] will be explored
here.

As shown in Fig. 4, a plain-imagex is pre-randomized
with R, which can be regarded as a weak or lightweight
encryption ofx performed by a user with limited computing
power. Then a service provider performs thetransformation,
down sampling and joint quantization and diffusion processes
on the ciphertextx′ sequentially. Referring to Sec. II, it is easy
to conclude that the compression ratio (CR) is exactly equalto
SR. Finally, authorized users can perform joint decompression
and decryption on the quantized and diffused measurement
vectorq∗ to reconstruct an approximated version ofx.

VI.CONCLUSIONS

A joint quantization and diffusion approach has been pro-
posed for the block compressed sensing of natural images. To
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Fig. 4. A block diagram showing the flow of compressing an encrypted
image.

realize the goal of fast compressed image sensing with secrecy,
structurally random matrix is employed for fast computation
and the obtained measurements are concealed by the proposed
joint quantization and diffusion mechanism. Theoretical anal-
yses and experimental results have demonstrated that the new
scheme can resist known-plaintext attack and its reconstruction
quality is comparable to that of CS without quantization. Our
approach can be extended to compress encrypted images.
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