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Abstract—This paper presents a two-stage hierarchical method
for play-break detection on non-edited team sports video feed.
Unlike most existing methods, this algorithm uses modern action
and event recognition method thus does not rely on production
cues of broadcast feeds, but instead concentrates on the content
of the video. Moreover, the method does not require player
tracking, can be used in real-time and can be easily adapted to
different sports. In the first stage, bag-of-words event detectors
are trained to recognize key events such as line changes, face-offs
and preliminary play-breaks. In the second stage, the output of
the detectors along with a novel feature based on the number
of detected spatio-temporal interest points are used to create a
context descriptor. The final classification is performed on this
context descriptor. Experiments demonstrate the benefits of using
this context descriptor by reducing the frame classification error
by 18% when compared to the baseline method. The efficiency
of the proposed method is demonstrated on a real hockey game
(accuracy over 88%).

Index Terms—event detection; bag-of-words; play-break clas-
sification; event modelling.

I. INTRODUCTION

Automatic video summarization is of great importance in
a world producing an ever increasing quantity of visual data.
For instance, Cisco forecasts that in 2018, a million minutes of
video content will be transferred over the Internet every second
[1]. Sport events attract large audiences and is therefore a
non-negligible video category. In sport events, some sequences
are less pertinent and do not catch the interest of the viewer
(e.g. time-outs). When live broadcasting such events, it would
make sense to detect these less interesting sequences to adjust
the compression rate of the broadcast feed, replace them with
advertisement or players information. Play and break detection
have to be performed to achieve that goal. The detection of
these events is also primordial to perform automatic editing
and summarization of sporting videos.

Over the years, a lot of approaches have been proposed to
tackle the play break and event detection problem in sport.
However, to our knowledge none of these may be applied
to unedited footage from a fixed camera because they rely
on production cues. For instance [2] used production cues
such as replay and close-up sequences. In [3], Wang and
Zhang proposed a method to recognize shooting events in ice
hockey. The brightness of the frames was used as a feature
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to distinguish between close-ups and global camera views.
Ekin [4] also used the type of point of views in the frame as
features. Qian [5] used overlaid text amongst other features.
Assfalg [6] presented a method to detect important moments in
a soccer game. This method uses unedited video streams from
a mobile camera. The position of the ball is inferred based
on the camera motion, and the part of the field covered in the
frame is used as a feature. This means that the cameraman has
done most of the tracking and pattern recognition job.

Recent advances in action and event recognition have made
it possible to work directly on the content of the video
feed instead of its editing style as the existing methods do.
The method proposed in this paper makes use of modern
action recognition methods to detect on-the-fly play and break
segments in an unedited video feed captured by a fixed
camera. Moreover, it can run in real-time, and does not need
segmentation or tracking of the players. Also, many existing
methods rely on rules or expert knowledge specific to the sport
of interest [6]—[8], which makes them inapplicable to other
sports. The proposed method could easily be adapted to other
sports.

The contributions of this paper are threefold. A new method
for play-break segmentation is introduced. A framework is
proposed to adapt the standard bag-of-words (BOW) classifi-
cation pipeline to event detection. A new context descriptor
based on the output of these detectors as well as spatio-
temporal interest points (STIP) detection number is introduced.

The complete system is validated on a newly introduced
dataset consisting of a complete hockey game. The method is
compared to a baseline method widely used in event detection
(91, [10].

II. EVENT DETECTORS

The proposed method adapts the generic bag-of-words
classification framework to event detection. An overview of
the detector is presented in Fig. 1. The generic framework
for action recognition [10], [11] is used to classify complete
sequences as one of some predefined classes. The proposed
adapted framework enables the detection of events on a live
feed even if they are concurrent.
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First, the incoming frames are grouped in video slices.
STIPs are then detected and extracted. Then, principal com-
ponent analysis (PCA) and whitening are applied to the STIP
feature vectors. Finally, histograms are produced and detection
is performed on the slices.

A. Video Slicing

To achieve temporal localization of the events, the video
sequence is divided into smaller sub-sequences called slices,
using an overlapping sliding window. Each of these slices
is classified separately and a likelihood score is produced
for each of them. The step size between each window slice
determines the granularity of the detection as well as the
latency of the system when used in live feed contexts.

B. Feature Extraction

To limit the amount of data to be processed, STIPs are
detected and extracted. The detection is achieved using a 3D
adaptation of Harris corners [12] introduced by Laptev in [13].
Each STIP is characterized by a combination of histograms
of oriented gradients (HOG) and optical flow (HOF). This
descriptor has been proved to be a reliable choice for action
recognition [10] because of its capacity to represent shape
and motion. The STIPs are detected and extracted at different
scales to compensate for perspective effects in the images
captured by a far-field camera. Wang’s implementation of
Laptev’s algorithm [10] was used in the following experiments.

Applying PCA reduction and whitening to feature vectors
has been proved to boost classification performance in action
recognition problems [14]. Whitening is applied after the PCA
projection and dimensionality reduction.

C. Code-Word Association

In order to create a code-word dictionary, STIPs are ran-
domly sampled from the complete training sequences. Samples
taken from sequences containing the events to be recognized
are also added to ensure these events appropriately are repre-
sented. If the STIPs were only sampled uniformly in the video
sequences, there would be a risk of creating a dictionary lack-
ing examples from rare classes. Once samples are collected, k-
means clustering is performed in order to create N code-word
prototypes. At runtime, every STIP feature vector is quantized
to the nearest of these IV prototypes using the Euclidean norm.

D. Detection

For each video slice, the code-words associated with the
detected STIPs are pooled in a frequency histogram. This
histogram represents the content of the slice. For every event
detected, a likelihood score is obtained using the output of a
support vector regression. The normalized y? kernel is used:

N
LilYi
k X, = Zia (1)
(x,y) Z;%+%
where z; and 7; are the i*" bins of histograms x and y. As
mentioned earlier, IV is the number of words in the dictionary.
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Fig. 2. Context vector construction.

III. CONTEXT ANALYSIS
A. Context Descriptor

In order to improve the performance of the play-break
recognition, a context descriptor, shown in Fig. 2, is intro-
duced. This descriptor is constructed using the likelihood
scores from the event detectors described in Section II. In
the following experiments, three detectors have been trained
to recognize face-off, line change and play sequences. The
intuition behind the context descriptor is that certain events
tend to precede or to indicate a play or a break sequence. For
instance, knowing that a face-off just finished, there are greater
chances that the present segment is a play segment. Also, if a
long line change event is occurring, the game is probably in
a break.

The context descriptor at time ¢ is given by:

Ct = {ft71t7ptast}7 (2)

where the face-off descriptor f; is given by:

£, ={0:,01—1,....0_1}, 3)

where T is the number of slices contained in the context
window and 6, is the event detector output at time t. The
play and line change descriptors (1, p;) are constructed in a
similar manner. Along with the detector outputs, a descriptor
s; based on the number of STIPs in a slice is also used. The
elements of this vector are given by:

M/B if M < B;
8:{1 it M > B, @)

where M is the number of STIPs detected in a slice and S is
a threshold that has to be set empirically. Each time a slice
is produced, a new context vector is computed. The context
vector is then classified as play or break using a support vector
regression (SVR) with a radial basis function (RBF) kernel.

IV. EXPERIMENTAL METHODOLOGY

A. Datasets

As no existing datasets met the requirements of our problem,
a new one was created and has been made publicly available
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Fig. 1. Schematic block overview of the event detectors.

Fig. 3. Examples taken from the dataset.

on-line. The dataset consists of a complete university-level
hockey game captured from two far-field views of the ice
rink. Fig. 3 shows images taken from each camera. The video
sequence from each point of view is treated as a different
training instance since their appearance differs considerably.
The images are in grayscale with a 480x270 pixels resolution
at 30 frame per second (fps). For our application, along with
play-break classification, 3 types of events are identified:

Play: A sequence is labelled as a play sequence when at
least one player is visible and it is possible for a human to
determine if the other players are actively playing.

Face-Off: A face-off event starts when the players are
converging to their respective positions, waiting for the puck
drop. It stops when the puck has been released and the players
start to skate away. Some more difficult examples include
images taken from afar where only two or three players are
visible. The events are 2 to 12 seconds long and often contain
line changes.

Line Change: A line change event usually happens during
a break, but may also occur during playtime. The dataset
contains both situations. The event is characterized by players
coming from and going to the player bench. The event
durations vary from 2 to 19 seconds.

B. Protocol

A hockey game is divided in three periods. In the dataset,
the game was captured from two angles which makes 6 video
sequences. The video sequences are further partitioned in six
parts making 36 sub-sequences.

The experiment results are obtained using 6-fold cross-
validation. For each fold, a part from each video sequence is
reserved for testing. The sliding window contains 45 frames
(1.5 sec) and a new one is produced each time 15 frames are
produced. The dictionary contains 400 code-words. This has

TABLE I
PARAMETERS USED FOR EACH EXPERIMENT REPETITION.

SVR Context Descriptor
v C T B
Period 1 ~ 0.001 1000 15 100

been arbitrarily selected based on earlier works on homoge-
neous datasets such as [11]. The PCA stage is set to keep 97%
of the signal energy, which corresponds to 83 components out
of 162.

The SVRs of the event detectors are trained on all positive
examples from the training set. An equivalent number of neg-
ative examples are sampled randomly. The SVR regularization
parameter C' is obtained by grid searching using 8-fold cross-
validation on the training set. The configuration yielding the
best accuracy was retained (C' = 0.01).

The parameters for the context descriptor and the final
SVR (C and 7) classifier were determined using 8-fold cross-
validation on the training set. The parameters are summarized
in Table L.

The baseline method used for comparison is very similar to
the one used by the authors of [9]. This method is the usual
BoW pipeline [10] where the STIPs are detected with 3-D
Harris corners and HOG/HOF is used as descriptor. The clas-
sification of the histograms is performed by a SVM. However,
a PCA and whitening stage has been added. Also, the number
of detected STIPs was not limited. These modifications have
been made to make sure the comparison with our method was
fair and not due to whitening or STIP count.

V. RESULTS

Fig. 4 shows the receiver operating characteristic (ROC) and
precision-recall (P-R) curves obtained using the proposed and
reference methods for one run of the experiment.

The result variations from one fold to another are explained
by the nature of the data. For instance, some parts of the
game contain less occurrences of some events than others,
which might result in folds containing more training instances
than another. Also, in this particular game, one team was
dominating the other. Because of this, a bigger part of the
action occurred in one zone thus creating imbalance in the
number of event instances captured by the two camera angles.
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Fig. 4. Precision-recall and ROC curves for play sequence detection.

TABLE II
RESULTS OBTAINED ON THE DATASET.

AUC ROC Accuracy

Algorithm mean st. dev. st. dev

XXXX £+ XXX
XX.XX £+ XXX

mean

Baseline method [9]
Proposed method

To further assess the benefits of using the context descriptor
stage, the accuracy was obtained from 10 runs of the algorithm
on the entire dataset. Several replications of the experiment are
needed since the recognition results depend on the quality of
the dictionary. To create the dictionary, STIPs are randomly
sampled and the seeds of the k-means are also randomly
selected. The area under the ROC curve (AUC) of each run is
averaged and presented in Table II. An average performance
boost of 0.01440.009 can be observed, which confirms the
benefits of considering the temporal context in play-break
classification. When using the optimal threshold, the accuracy
rises by 2.7+1.32% which translate in a 18.07£9% error
reduction.

Most of the misclassified video slices are situated at the
start and end of a play event. This means that the proposed
algorithm often disagree for 15 frames (500 ms) with the
manually obtained labels. If the slice right before or after a
play event is considered as a reasonable margin of error, the
AUC rises by X.XX + X.XX%. Let it be said that even for a
human annotator, it is difficult to determine the exact duration
of a play sequence, especially in the frequent situation where
only one player is visible.

It is possible to assess the usability of the method in real-
time settings by measuring the processing time. Using a single
processor, the algorithm detects STIPs, extracts the HOG/HOF
features and saves them to a file at an average rate of 5
fps. Since image processing is highly parallelizable, one could
expect to attain a frame rate greater than 30 fps using 8 cores.
Once the STIPs are extracted, the analysis of a complete 20
minute period captured from 2 angles takes under 150 seconds
using a MATLAB implementation. In lights of these results,
meeting real-time requirements should not be a problem.

VI. CONCLUSION

In this paper, we presented an efficient method for play-
break detection. Unlike previous efforts in the field, our

method does not require an edited video sequence or camera
tracking of the action. Moreover, the method can be imple-
mented in real-time, enabling its integration in automated
capture systems. Experiments demonstrated the applicability
of the algorithm to a real-life setting. The use of the temporal
context information proved to be beneficial to play-break
segment recognition.

More experiments are needed in order to assess the suit-
ability of this method to other sports and venues. Also the
detection of other types of event should be explored to further
increase the performance of the method.
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