
ar
X

iv
:1

60
6.

00
73

7v
1 

 [c
s.

IT
]  

2 
Ju

n 
20

16

Hardware Decoders for Polar Codes: An Overview
Pascal Giard∗⋄, Gabi Sarkis∗, Alexios Balatsoukas-Stimming†, YouZhe Fan‡,
Chi-ying Tsui‡, Andreas Burg†, Claude Thibeault§, and Warren J. Gross∗
∗Dept. of Electr. and Comput. Eng., McGill Univ., Montréal,Québec, Canada.
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Abstract—Polar codes are an exciting new class of error
correcting codes that achieve the symmetric capacity of mem-
oryless channels. Many decoding algorithms were developedand
implemented, addressing various application requirements: from
error-correction performance rivaling that of LDPC codes to
very high throughput or low-complexity decoders. In this work,
we review the state of the art in polar decoders implementing
the successive-cancellation, belief propagation, and list decoding
algorithms, illustrating their advantages.

I. Introduction

Polar codes are the first codes with an explicit construction
to asymptotically achieve the symmetric capacity of memory-
less channels using a low-complexity, successive-cancellation
(SC), decoding algorithm [1]. Additionally, they were shown
to be free of error floors when used with binary-input symmet-
ric memoryless channel, and are therefore attractive for wired
communications and storage systems [2].

The serial nature of SC decoding limits the throughput of
its implementations. Two approaches are used in literatureto
overcome the sequential nature of SC: exploiting the polar
code structure to estimate multiple bits in parallel while still
using SC-based algorithms [3], [4], and using the belief propa-
gation (BP) decoding algorithm with parallel message passing
[5], [6]. Hardware decoders implementing these algorithms
reach throughputs of multiple Gbps and can exceed 100 Gbps
when unrolling is used [7], [8].

While SC and BP based decoders are fast and efficient, their
error-correction performance can be inferior to that of other
modern codes such as low-density parity-check (LDPC) codes.
However, when polar codes are decoded using the successive
cancellation list (SCL) decoding algorithm [9], their error-
correction performance was shown to exceed that of LDPC
codes used in recent wireless communication standards [9].

In this paper, we review the state of the art in hardware
polar decoder implementations. We start with a review of polar
codes in Section II. SC-based implementations are discussed
in Section III and BP-based decoders in Section IV. Finally,
SCL decoder implementations are reviewed in Section V.

II. Background

Polar codes are recursively constructed from a 2×2 polariz-
ing transformationF =

[

0 1
1 1

]

: a vectoru1
0 of two bitsu0 andu1

is encoded usingF to yield a polar codeword. When estimating
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Fig. 1. Graph (a) and tree (b) representation of an (8, 4) polar code.

u0 and u1 using SC decoding, the probability of correctly
estimatingu0 decreases while that ofu1 increases compared to
an uncoded vector. This transform is recursively applied logN
times to encodeN bits. As N → ∞ the probability of correct
detection approaches 1.0 (reliable) or 0.5 (unreliable) and the
proportion of reliable bits approaches the symmetric capacity
of the underlying memoryless channel.

To construct an (N, k) polar code, thek most reliable bits
in uN−1

0 are used to carry the information bits; while the
remaining bits are frozen by setting them to a predetermined
value—usually ‘0’. Fig. 1a shows the graph representation of
an (8, 4) polar code where the frozen and information bits are
labeled in gray and black, respectively. Due to the recursive
nature of polar code construction, binary trees are a natural
representation for these codes. In Fig. 1b, the white (black)
leaf nodes correspond to frozen (information) bits; whereas the
gray nodes correspond to the polar transformations encircled
in Fig. 1a. Each sub-tree rooted at a node of depth log2 Nv,
where leaf nodes have a depth of 0, corresponds to constituent
polar codes of lengthNv.

Quantization in hardware decoders varies based on polar
code length and the decoding algorithm used. Many imple-
mentations, e.g. [4], use fewer bits for channel reliability
information than for internal values. SCL decoders [10] are
less tolerant of value saturation and therefore require more
quantization bits than their SC counterparts. Finally, longer
codes require more integer bits to represent the wider range
of their internal values.

III. Successive Cancellation-Based Decoders

In this section we briefly go over the algorithms and archi-
tectures that led to the fastest hardware decoder implementa-
tions based on the successive-cancellation (SC) algorithm.
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A. SC-based Decoding Algorithms

The SC decoding algorithm traverses the entire polar code
tree, e.g. Fig. 1b, depth first, visiting all leaf nodes. To reduce
latency, the simplified successive-cancellation (SSC) decoding
algorithm does not traverse sub-trees whose leaves all corre-
spond to frozen or information bits. Instead, it applies a de-
cision rule immediately [3]. Similarly, constrained maximum-
likelihood decoding of multiple bits can be employed to trim
the decoder tree [11]–[13].

The Fast-SSC decoding algorithm extends the SSC al-
gorithm by applying low-complexity decoding rules when
encountering certain types of sub-trees [4], [14]. Specialized
decoding of repetition and single-parity-check (SPC) codes
are the most notable examples and reduce the decoder-tree
size, significantly reducing the number of calculations and
increasing the decoding speed.

B. Fast-SSC Decoders

The configurable hardware implementation of the Fast-
SSC algorithm resembles a processor [4]. It features memory
for the soft and hard internal values and buffers to allow
uninterrupted operation while the next frame is loaded and the
previously estimated codeword offloaded. The decoder accepts
a set of instructions representing the desired polar code. These
instructions are utilized by the controller to generate theload
and store addresses as well as the ‘select’ signals to route the
data in and out of the different processing units.

C. Unrolled Decoders

First applied to polar decoders in [7] and [15], improved
and generalized in [8], unrolling is a technique that has been
successfully applied to other types of decoders before, such
as the high-speed LDPC decoders of [16].

An unrolled polar decoder instantiates processing elements
for each and every node in the decoder tree of a specific
polar code. This way, each processing element can process a
different received vector. By inserting registers at each decoder
stage, a new frame can be loaded and an estimated codeword
output at every clock cycle. While this deeply-pipelined archi-
tecture provides very high throughput, it requires a significant
amount of memory for data persistence that increases with
the code length. As a compromise, an initiation intervalI
greater than 1 can be defined where a new frame is fed to the
decoder everyI clock cycles. The period at which estimated
codewords are output is also ofI clock cycles.

D. Implementation Results

Table I shows FPGA implementation results for both config-
urable and unrolled Fast-SSC decoders. The decoder of [4] was
the first polar decoder to reach a throughput of 1 Gbps. The
decoder of [14] is an improvement over [4] where support for
other constituent codes was added to improve the throughput
in decoding lower-rate codes. The last three rows of Table I
are results for the unrolled decoders of [8] showing that
throughputs in the hundreds of Gbps are achievable at the
cost of area and resource usage.

TABLE I
Results for SC-based polar decoders of various code lengths (N) and rates

(R) implemented on a Altera Stratix IV EP4SGX530KH40C2 FPGA.

Impl. N R LUTs Regs. RAM f T/P Latency
(kbits) (MHz) (Gbps) (µs)

[4] 32,768 0.9 25,866 7,209 536 108 1.2 26.4
[14] 1,024 0.5 24,821 5,823 36 103 0.6 1.6
[8] 1,024 0.5 86,998 65,618 0 218 4.5 1.7

1,024 0.5 136,874 188,071 84 248 254.1 1.5
2,048 0.5 217,175 261,112 5,362 203 415.7 3.2

IV. Belief Propagation Decoders

Belief propagation (BP) decoding of polar codes is a
message passing algorithm over the graph representation [1],
achieving similar error-correction performance to SC decod-
ing. Soft messages are iteratively propagated in the graph
until a stopping criterion is met e.g. the maximum number of
iterations is reached. Then, threshold detection is applied to the
left-hand-side messages to generate the estimated codeword.
This section reviews different design aspects of BP decoders.

A. Fast BP-Based Decoders

From Fig. 1a, the graph of polar codes of lengthN consists
of log2 N columns, each with 2N incident edges. A BP
decoder traverses the graph column-by-column and each time
2N soft messages at the corresponding edges are updated.
If the graph is traversed in a round-trip manner, a single-
column decoder takes 2 log2 N−1 clock cycles to complete an
iteration. A double-column architecture was proposed in [6]
where the operations of two adjacent columns are merged in
one clock cycle, effectively reducing in half the latency per
iteration. Although the critical path was shown to increaseby
14% compared to that of the single-column architecture, the
decoding throughput was improved by more than 40%.

The graph can also be traversed uni-directionally, e.g., only
activating columns from right to left. Under this schedule,
data dependency is relaxed. Taking Fig. 1a for example, the
messages updated by the left-most columnc0 of the current
iteration are not used by the right-most columnc2 of the
next iteration. Hence, the operations of these two columns
can be simultaneously executed and one clock cycle is saved.
More generally, an iteration-level overlapping schedule was
proposed in [17]. By increasing the hardware complexity to
compute 1

2 log2 N columns simultaneously, the latency of a
uni-directional BP decoder is reduced fromJ log2 N clock
cycles to 2J + log2 N − 2, whereJ denotes the number of
iterations.

B. Low-Complexity BP Decoders

In [18], a low-complexity variant of the BP decoding
algorithm called soft cancellation (SCAN) was proposed.
Under that algorithm, soft messages propagate according to
the schedule of SC decoding, resulting in an increased latency
in O(N) clock cycles. However, the message propagation of
SCAN was shown to be efficient and its overall complexity
at low SNR regime was reduced by an order of magnitude
compared to that of regular BP decoding.



TABLE II
ASIC implementation results of BP decoders for a (1024, 512)polar code.

Implementation [6] [19] [21]

Architecture double-col. overlapped col.-combined
Schedule round-trip uni-direction round-trip
Technology 65 nm 45 nm 45 nm
Area (mm2) 1.476 N/A 0.747
Supply (V) 1.0 1.1 N/A
f (MHz) 300 500 197
Max. iter. # 15 40 15
T/P (Gbps) 2.05 2.9 1.683
Avg. iter. #@SNR 6.57@4.0 dB 23.0@3.5 dB N/A
T/P (Gbps)@SNR 4.68@4.0 dB 4.5@3.5 dB N/A

Similar to iterative decoders for LDPC or turbo codes,
early stopping schemes can be used in BP decoders for polar
codes. In [19], threshold detections on messages are made after
each iteration. When they satisfy certain criteria, decoding is
stopped immediately. Furthermore, messages related to sub-
graphs are checked in [20] such that the operations in those
sub-graphs can be stopped earlier. As a result, with the method
of [19], the average decoding complexity is reduced by around
30% with negligible performance degradation. The method in
[20] further reduces the average complexity by 40%.

C. Memory-Efficient BP Decoders

It was observed in [6] that, if a single-column decoder
follows a round-trip schedule,N messages instead of 2N need
to be updated each time. Thus, the memory requirement is
reduced in half. In [21], two adjacent columns are combined
into one so that intermediate messages need not to be stored.
However, the corresponding message updating rules have to be
modified accordingly. As a result, the overall memory usage is
significantly reduced, at the cost of some combinational logic
overhead.

D. Implementation Results

Table II summarizes the ASIC implementation results of
different BP decoders. It can be seen that, due to their parallel
nature, the state of the art is already capable of achieving
throughputs of multiple Gbps. However, even at high SNR,
the average iteration number is high resulting in a greater
computational complexity than its SC-based counterparts.

V. Successive Cancellation List Decoders

In successive cancellation list (SCL) decoding, instead of
decoding a single codeword, a list ofL tentative codewords
(commonly called decodingpaths) is decoded simultaneously
and the final codeword can be selected with the help of a
CRC [9]. The list ofL paths can be processed in parallel to a
large extent using up toL SC decoders. In the simplest form
of SCL decoding, the SC decoders only interact when a leaf
node of the decoder tree that corresponds to an information
bit is activated. When this happens, the SCL algorithm has to
select theL most likely paths out of 2L possible paths, and
continues SC decoding with the surviving paths.

In Fig. 2, we observe that polar codes under SCL decoding
can achieve similar performance to the LDPC codes used in
the IEEE 802.11n standard.
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Fig. 2. Frame error rate of polar codes of lengthN = 1, 024 under SCL
decoding withL = 2 and an 8-bit CRC compared with the LDPC codes of the
IEEE 802.11n standard of lengthN = 1, 944 under offset min-sum decoding
with a flooding schedule and a maximum of 10 iterations. All simulations
were performed using BPSK modulation over an AWGN channel.

A. Exact LLR-Based SCL Decoding

The original description of SCL decoding was made using
channellikelihoods [9]. While such a high-level description
is valid, these likelihoods can become very small during the
decoding process, resulting in numerical precision problems
and inefficient hardware implementations. The first hardware
implementations of SCL decoding used log-likelihoods to
partially overcome these problems [22], [23]. An equivalent,
but much more efficient, description of SCL decoding in terms
of LLRs and an LLR-basedpath metric was presented in [10],
[24]. LLR-based SCL decoding leads to the most efficient
exact1 hardware implementation of SCL decoding [10].

B. Path Metric Sorting

A computationally challenging step of SCL decoding is that
of path metric sorting, where theL best path metrics have
to be selected among 2L possible metrics. The properties of
the LLR-based path metric were exploited in [25] in order to
significantly reduce the complexity and the critical path ofthe
metric sorting blocks, while still performing exact sorting.

In a different approach, path metrics were approximately
sorted with double thresholding method proposed in [26]. It
compares 2L path metrics with two thresholds,AT andRT . A
path survives if its metric is smaller thanAT . After it, the paths
with metrics in betweenAT andRT are randomly selected to
fill up the list of L surviving paths. This method significantly
reduces the critical path of metric sorting, especially fora large
L. The problem of path metric sorting is even more pronounced
in decoders that employ multi-bit decision, such as [12], [27],
since in this case theL best metrics out of up to 2bL candidate
metrics have to be selected, whereb is the number of bits that
are decoded simultaneously. To this end, an approximate two-
stage sorting unit was proposed in [13], where the bestq out of
2b successor paths are first selected for each path, and then the

1The implementation is “exact” up to quantization loss and min-sum ap-
proximation loss, which are common losses to all hardware implementations.



TABLE III
ASIC implentation results for various SCLdecoders.

Implementation [10] [13] [26] [27]
Code Length 1,024 1,024 1,024 8,192
Rate 0.5 0.5 0.5 0.5
List Size 4 4 16 4
Algorithm Exact Approx. Approx. Approx.
Technology 90 nm 90 nm 90 nm 90 nm
Area (mm2) 1.78 1.21 7.46 2.45
Supply (V) 1.0 N/A 1.2 N/A
f (MHz) 794 500 641 400
T/P (Mbps) 307 313 220 1,052

bestL paths are selected among theqL paths resulting from
the first step. This approach reduces the sorting complexityat
the cost of a small performance degradation.

C. Approximate Tree Pruning in LLR-Based SCL Decoding

Since SCL decoding heavily relies on SC decoding for
the computation of the path metrics, one may expect that
the pruning techniques described in Section III should be
applicable to SCL decoding as well. Unfortunately, in order
to update the LLR-based path metric of [10], all the LLRs
produced by the leaves of the decoder tree are required and
these node computations cannot be pruned if one wants to
implement exact SCL decoding. Nevertheless, [27] describes
an approximate SCL decoding algorithm which is based on
tree pruning that simply ignores some of the path metric up-
dates corresponding to computation tree leaves. The resulting
performance degradation is small and an outline of a hardware
architecture is presented which can achieve a throughput of
slightly over 1 Gbps for a polar code of lengthN = 8192 and
rateR = 0.5 using SCL decoding withL = 4.

D. Implementation Results

Table III summarizes the implementation results of the
aforementioned state-of-the-art SCL decoder architectures.
While SCL decoders have an error-correction performance that
is close to (or even better than) LDPC codes, we observe that
the implementation of multi-Gbps SCL decoders remains a
challenging problem.

VI. Conclusion

In this paper, we reviewed the state of the art in polar
decoders implementing the successive-cancellation, list, and
belief propagation decoding algorithms. The advantages of
the different algorithms were illustrated. It was shown that
the many decoding algorithms were developed and imple-
mented to address various application requirements: from
error-correction performance rivaling that of LDPC codes to
very high throughput or low-complexity decoders.
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