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Abstract—Oversampling and noise-shaping have in recent
years been introduced to SAR ADCs to improve the conversion
accuracy. Similar to delta-sigma ADCs, this is done by means of a
feedback loop containing a loop filter. In this paper, the high-level
design of this loop filter is discussed, and important differences
to classical delta-sigma loop filter design are pointed out. Among
others, it is found that the poles of the noise transfer function,
and not only the zeros, play a significant role on the conversion
accuracy. Based on this, a new loop filter topology with four
poles and two zeros is proposed and compared to existing loop
filters. This reveals that the proposed loop filter can yield more
energy-efficient noise-shaping SAR ADCs than the ones seen in
the literature today.

I. INTRODUCTION

In recent years, the most energy effective ADCs reported
in the literature have been of the Successive Approximation
Register (SAR) type [1]. SAR ADCs are relatively simple
circuits, and only consist of a capacitive DAC, a comparator,
and a digital circuit. Due to this, their energy efficiency
scales well with technology as long as the target conversion
accuracy is relatively low. When the conversion accuracy
is increased, however, it becomes more difficult to achieve
the same premium energy efficiency due to thermal noise
and mismatch concerns. Different additions to the basic SAR
circuit have been reported in the literature to mitigate problems
like this, and an example is noise-shaping SAR ADCs (NS-
SARs), reported in [2], [3], among others. The main idea of an
NS-SAR is to increase the conversion accuracy by introducing
oversampling and noise-shaping to the circuit, like in a delta-
sigma converter. Most importantly, this noise-shapes both the
quantization noise as well as the comparator circuit noise of the
ADC such that it is not necessary to increase the comparator
accuracy to that of the whole NS-SAR [2].

In the coverage of NS-SARs in the literature so far, an
elaborate treatment of their high level design seems to be
lacking. Among others, there exist open questions related to
both the optimum choice of loop filter topology, and the
design of the noise transfer function (NTF). In this paper, we
therefore aim to advance the art of high level NS-SAR design
by exploring and proposing suitable NTF design techniques,
and by introducing a new loop filter topology especially suited
for NS-SARs. To be able to do this conveniently, a general
NS-SAR is introduced in section II, such that loop filter
discussions throughout the paper can be done in terms of this.
The discussion of NTF design for NS-SARs then follows in
section III. Most importantly, the effect of the NTF poles
are considered, and it is shown how they usually can be
utilized to increase the conversion accuracy. This is in contrast

to classical delta-sigma ADCs, where the NTF poles must
often be used to stabilize the loop rather than increasing the
performance. This observation suggests that the accuracy of
NS-SARs can be increased by adding more poles to the loop
filter, such as already done in the cascaded FIR-IIR filter
in [2], realizing one zero and two poles. Based on this finding,
the loop filter topology proposed in section IV of this paper
realizes four poles in addition to two optimally placed zeros.
Behavioral simulations presented in section V demonstrate that
this increases the performance substantially, both compared to
the filter in [2] and to a standard second order loop filter.

II. A GENERAL NOISE-SHAPING SAR

The general NS-SAR used in this paper is shown in
figure 1. It differs from a normal SAR by an extra comparator
input, connected to a filtered version of the DAC voltage vres .
The discrete time loop filter H(z) used for this is clocked by a
signal DONE, which triggers each time the SAR has finished a
conversion. This means that only final versions of vres will be
sampled by the loop filter, and for a conversion n we denote
such a sample as vres(n). The filter output in discrete time
domain thus follows as vres(n) ∗ h(n), where h(n) is the
impulse response corresponding to H(z). By taking this into
account when analyzing the SAR circuit, the output is obtained
as1

Dout(n) = vin(n)− vres(n) ∗ h(n) + vq(n) (1)

That is, the value −vres(n) ∗ h(n) is added to the conversion
due to the extra comparator input. vq(n) is the current quan-
tization error, and its magnitude is bounded by the number
of bits B in the SAR, like in a normal SAR ADC. It should
also be noted that the loop filter must be delaying to yield a
realizable system, since a conversion n will otherwise depend
on vres(n), which is not available until after the conversion.

If we now assume that the result of the last SAR bit-cycle
decision is also fed back to the DAC (this is a requirement
to obtain noise-shaping), the final DAC voltage after each
conversion will be

vres(n) = Dout(n)− vin(n) (2)

By substituting this expression into equation (1), taking the
z-transform and rearranging, we obtain

Dout(z) = vin(z) +
1

1 + H(z)
vq(z) (3)

1Dout is treated as a quantity having units of volts, as is often common in
ADC analysis. This is also done in the rest of the paper.
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Fig. 1. The introduced general noise-shaping SAR ADC
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Fig. 2. Linear model for the general NS-SAR. The grey lines represent
logical signal flow that does not exist as physical electrical signals.

The quantization error is thus shaped by a general transfer
function 1/(1+H(z)), which can be designed by selecting an
appropriate loop filter.

We can now make a linear model of the general NS-
SAR by replacing the quantization error in equation (1) with
an independent white noise source e(n), and then use this
equation together with equation (2) to draw a signal flow
schematic. The result is shown in figure 2, where the signals
y(n) and q(n) = −vres(n) have been introduced to represent
the loop filter output and input. It should be noted that
the source e(n) can be used to represent comparator circuit
noise in addition to quantization noise, because these noise
contributions enter the system at the same place in the signal
flow. The paths in the model that was drawn with help from
equation 2 are colored grey, and it is important to realize that
these represent logical signal flow in the system, and not actual
electrical signal paths. We see that one of the results is that
the analog version of Dout(n) does not need to exist within
the circuit, and there is therefore no need for an extra DAC
to generate it. This is true because the SAR DAC doubles
as the feedback DAC and generates q(n) directly during the
normal conversion process. This is a significant advantage of
NS-SARs, since a normal multi-bit delta-sigma modulator will
require one or more multi-bit DACs in the system.

By analysis of the model, we find that the signal transfer
function is unity, and that the noise transfer function is

NTF(z) =
Dout(z)

e(z)
=

1

1 + H(z)
(4)

This is in accordance to equation (3). The unity STF of the
ADC exists because of the input feed-forward path in figure 2,
and makes the NS-SAR equivalent to a low-distortion delta-
sigma modulator [4]. In such delta-sigma modulators, the input
signal does not enter the loop filter, and its maximum voltage
swing is therefore only set by the power of e(n). Since an NS-
SAR employs multi-bit quantization, e(n) is small compared
to the input signal, and the loop filter will therefore only need
to handle small voltage swings.

It is important to mention that there are NS-SARs in the
literature ([3] among others) that do not fit into the scheme of
the general NS-SAR introduced in this paper. These converters
employ feedback from vres to the input of the whole ADC,
and do in this way inherently realize integration. Although this
is advantageous, a large share of the circuit blocks in the ADC
will take part in the integration feedback loop, and thus have to
be carefully designed to keep the integrator leakage acceptable.
This is similar to error-feedback delta-sigma ADCs, which are
also difficult to design in practice [5, Ch. 3]. Consequently,
the general NS-SAR in this paper is made in accordance to
the more robust structure used in [2], where integrators have
to reside inside the loop filter, and thus have their leakage
determined by the DC gain of their gain elements.

III. NTF DESIGN FOR NS-SARS

The principal goals of NTF design for NS-SARs are similar
as for delta-sigma converters. That is, the NTF should have as
much attenuation as possible inside the signal band, such that
in-band noise becomes efficiently suppressed. Additionally, the
maximum out-of-band gain of the NTF cannot be chosen too
high, as this will lead to signal saturation at different points
in the system (e.g. the quantizer/SAR or an integrator) due
to high internal signal levels. This again leads to an unstable
noise-shaping loop. These two goals are somewhat conflicting,
since a decrease of maximum out-of-band gain often impacts
the in-band attenuation.

Because of the similarity to delta-sigma converters, it is
possible to use existing design techniques to design the NTF
of NS-SARs. The zeros can thus be placed at DC, or optionally
at other locations inside the signal band, for instance the
optimal ones proposed in [6]. Pole placement for delta-sigma
converters is more open, and both “design by hand” and
software-based approaches exists; See for example [5, Ch. 4
and 8]. It is nevertheless well established that it is the poles
that primarily affect the stability of the ADC, since they have a
big impact on the out-of-band gain. Therefore, it can probably
be said that the poles are most often used as a “stabilizing
tool” in delta-sigma converters.

One pole placement method named CLANS is presented
in [7], and considers the task as a constrained optimization
problem where the objective is to maximize the in-band NTF
attenuation. The optimization is done subject to a stability
criterion, derived in the same paper. This can be written as

Vin,p-p,max + ∆

( ∞∑
i=0

|ntf (i)| − 1

)
︸ ︷︷ ︸

Yp-p,max

≤ FSR (5)

and states that the input to the quantizer/SAR (the rightmost
summer in figure 2), constituted by the sum of vin(n) and
the loop filter output y(n), should never exceed the SAR full
scale range, FSR. It is furthermore assumed that the ADC will
remain stable if this is fulfilled. This makes sense since the
SAR itself is the block in the system that processes the largest
signals, and will thus probably saturate first. The expression
derived for Yp-p,max is a theoretical upper bound, expressed by
the NTF impulse response ntf(n), and the spacing ∆ between
two adjacent output levels of the SAR. When the optimization
is run, both Vin,p-p,max , ∆, and FSR must be given.
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Fig. 3. NTF frequency response and pole-zero plot for NS-SARs having two
zeros and two CLANS-placed poles in the NTF, and different number of bits
in the SAR. Compared to a 2. order differentiator NTF. All zeros are located
at DC, OSR = 8, and Vin,p-p,max = 0.9.

Figure 3 shows the resulting frequency response and
pole/zero map after some CLANS runs for a NTF having
two zeros placed at DC, and two poles whose locations are
determined by the optimization. Vin,p-p,max was set to 0.9.
Also, a reference case where the poles are placed at z = 0
is included, resulting in the simple “differentiator” transfer
function NTF(z) = (1 − z−1)2. For the two CLANS runs,
the number of bits B in the SAR is varied, and this in turn
changes the value of ∆, which is inversely proportional to
B. For B = 5, we see that the optimizer has to pick pole
placements that lowers the maximum NTF gain to stabilize the
ADC, and that this impacts the in-band attenuation, compared
to the reference case. However, when B is increased to 8, a
different situation arises. The optimizer is now allowed to pick
pole placements yielding much higher maximum NTF gain,
and this improves the the in-band attenuation significantly,
compared to both B = 5 and the reference case. The function
of the poles now is thus to increase the accuracy of the ADC,
rather than just stabilizing it. This observation is very important
for NS-SAR NTF design, since it is convenient to have, say,
8-9 bits in a SAR. This is in contrast to delta-sigma ADCs
utilizing flash quantizers, where such bit counts are not easily
realized. All in all, this suggests that optimal pole placement
is crucial to maximize the performance of NS-SARs, and that
poles can have a significant impact on the in-band attenuation.

IV. A LOOP FILTER SPECIALLY SUITED FOR NS-SARS

The observations from the previous section hint that the
accuracy of an NS-SAR can be increased by adding extra poles
to the NTF, and not only extra zeros. This is attractive, because
extra poles in the NTF can be realized by adding passive feed-
forward paths in the loop filter, and the ADC accuracy can
thus be improved in a more energy efficient manner. Based
on this, we propose a filter topology especially suited for NS-
SARs. The filter is depicted in figure 4, and is constituted
by a resonator having extra feed-forward paths at the output.
By analysis of the signal schematic and through the use of
equation 4, we obtain the resulting NTF as

NTF(z) =

1 + (g1 − 2)z−1 + z−2

1 + (g1 + a1 − 2)z−1 + (a2 − a1 + 1)z−2 + a3z−3 + a4z−4

(6)

This NTF has a second order numerator and forth order
denominator, and hence two zeros and four poles. The poles
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Fig. 4. The proposed loop filter. Realizes a NTF with two zeros and four
poles.

can be chosen arbitrarily by selecting values for a1−4, while
the zero locations can be adjusted by g1. This coefficient is
present because of the resonator feedback path, and the zero
pair can be moved along the unit circle by its adjustment.

It is the extra feed-forward paths near the filter output that
realizes the extra NTF poles. To implement these passively, one
can sample the resonator output onto capacitors in a bank, and
then use samples from this bank each clock cycle to generate
the output in a capacitive summing circuit. This will more
or less only increase the power consumption by increased
clocking complexity, and the whole filter will therefore not use
much more power than the resonator alone. It should also be
noted that the circuit noise originating from the last integrator
will be noise-shaped by the first one, and its size can therefore
be reduced. Due to all this, it should be possible to conclude
that a good circuit implementation of the proposed filter will
use less than twice the power of the first integrator.

V. COMPARISONS BY BEHAVIORAL SIMULATIONS

In order to verify the performance of the proposed filter
compared to others, behavioral simulations have been con-
ducted in Matlab. In these simulations, a loop filter is rep-
resented as a state-space model, and input into to a behavioral
model of the general NS-SAR. The comparator in this model is
noisy, and the noise power is set equal to the quantization noise
(i.e. a 10-bit SAR will have an ENOB of 9.5). To conduct the
actual simulation, the model is evaluated in the discrete time
domain for an input sinusoid, and an ENOB value is finally
obtained by taking FFT of the resulting output. The loop filter
state-space model contains the filter coefficients, and these
have to be calculated from the NTF poles and zeros prior to
simulation. The NTF itself thus needs to be synthesized. This
is done by using CLANS for the poles, while the zeros are
simply set to DC for filters not having a resonator, and to the
optimum locations found in [6] when a resonator is present.

To gain insight into the loop filter performance, it is needed
to do sweeps in the design space by varying the OSR and/or
the number of bits B. Each time one of these variables are
changed, it is also important to re-run CLANS, as the optimizer
will now be faced with a new situation. Note that Vin,p-p,max

in equation (5) have to be chosen in order to run CLANS.
This choice is not trivial, because very high values inhibit
the choice of the best pole locations, and low values affect
the performance because of low signal power. Therefore, this
variable is swept in each simulated design point, and the
best value used. One should also have in mind that the aim
of the behavioral simulations in this paper is to show the



noise-shaping performance, and comparator thermal noise and
quantization error are therefore the only error mechanisms
that are modeled. This yields plots where the loop filter
performance becomes clear, but it is important to remember
that for example mismatch in the SAR DAC must be at
acceptable levels in practical implementations.

In figure 5, NS-SARs having various filters are simulated
for different values of B, while the OSR is held constant at 4.
The proposed filter is included in both its presented version,
a version of it not having the resonator feedback path, in
addition to a version where the extra feed forward paths are
also removed (i.e. a3−4 = 0). This last version only leaves two
freely selectable poles and two zeros at DC, and can therefore
be viewed as a “normal” second order loop filter. The versions
of the proposed filter are compared against the cascaded FIR-
IIR filter (1 zero at DC, 2 poles) from [2], and a theoretical
NS-SAR having the second order differentiator NTF (1−z−1)2

and a full-scale input signal. The plot shows that all the real
NS-SARs have better performance than this theoretical one as
B is increased to 6, and the NTF poles are thus used to boost
the accuracy of the ADCs, rather than just keeping them stable.

When it comes to the performance difference between the
different filters, we see that the advantage of going from the
filter of [2] to a filter having two zeros at DC and two poles
is quite modest (around a half bit at high B) at the selected
OSR of 4. Since the last mentioned also contains one more
integrator, it will have a higher power consumption that is
probably difficult to justify. When the extra feed-forward paths
and the resonator feedback are added to yield the proposed
filter, the situation betters, and a large performance increase is
achieved. This comes without any significant increase in power
consumption, as discussed in section IV. Consider for instance
B = 7, yielding 10 bit ENOB for the filter from [2], and 12
bit for the proposed filter. This is a large increase in accuracy,
and as the first mentioned filter also has an active integrator,
we can assume that the upgrade less than doubles the filter
power consumption. The proposed loop filter is thus clearly
favorable in terms of energy efficiency.

In figure 6, ENOB is plotted against OSR, while B is
held at 8. This reveals that it is still the number of zeros that
determines the rate of performance increase as the OSR is
adjusted. This means that for very high OSR, the number of
zeros are still most important, while the absolute performance
enhancements realized by the poles and the resonator can
be very significant for low OSR. This further shows how
important it is to fully utilize these design techniques in NS-
SARs, where low OSR is typically used.

VI. CONCLUSION

This paper has discussed high level NTF and loop filter
design for noise-shaping SARs. In order to do this, a NS-
SAR having a general loop filter was introduced, and its linear
model was presented. NTF design for the NS-SAR was then
discussed, and evidence suggesting that the poles of the NTF
can be used to boost the conversion accuracy if B is sufficiently
high was presented. Based on this, a loop filter having four
poles and a complex conjugated zero pair was proposed, and it
was postulated that its power consumption should be less than
twice that of a single integrator. In behavioral simulations, the
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proposed filter performed considerably better than the other
ones evaluated, and the significance of both the extra poles
and the resonator path was demonstrated.
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