
A Stochastic Approach to STDP 

Runchun Wang, Chetan Singh Thakur, Tara Julia Hamilton, Jonathan Tapson, André van Schaik  

The MARCS Institute, Western Sydney University, Sydney, NSW, Australia 
mark.wang@westernsydney.edu.au 

 
Abstract— We present a digital implementation of the Spike 

Timing Dependent Plasticity (STDP) learning rule. The 

proposed digital implementation consists of an exponential 

decay generator array and a STDP adaptor array. On the 

arrival of a pre- and post-synaptic spike, the STDP adaptor will 

send a digital spike to the decay generator. The decay generator 

will then generate an exponential decay, which will be used by 

the STDP adaptor to perform the weight adaption. The 

exponential decay, which is computational expensive, is 

efficiently implemented by using a novel stochastic approach, 

which we analyse and characterise here. We use a time 

multiplexing approach to achieve 8192 (8k) virtual STDP 

adaptors and decay generators with only one physical 

implementation of each.  We have validated our stochastic STDP 

approach with measurement results of a balanced 

excitation/inhibition experiment. Our stochastic approach is 

ideal for implementing the STDP learning rule in large-scale 

spiking neural networks running in real time. 

I.BACKGROUND 

The Spike Timing Dependent Plasticity (STDP) algorithm 

[1], which has been observed in the mammalian brain, 

modulates the weight of a synapse based on the relative timing 

of pre-synaptic and post-synaptic spikes. In STDP, the 

synaptic weight will be increased (or decreased) if a pre-

synaptic spike arrives several milliseconds before (or after) the 

post-synaptic spike fires. This learning rule is computationally 

intensive as it exponential functions and divisions. 

In neuromorphic systems, various implementations of the 

STDP algorithm have been proposed, such as a circuit based 

on analogue blocks and flip-flops [2],  a bistable synapse with 

a very compact analogue implementation of the STDP [3],  

and analogue blocks and switches to implement exponential 

STDP [4]. We have previously presented a compact 

implementation of the STDP using linear decays [5], [6]. Here, 

we present a novel stochastic approach that works with our 

previous system and can efficiently implement the STDP 

operations. 

II. EXPONENTIAL DECAY 

A. Infinite Impulse Response (IIR) filter approach  

 A discrete time first order exponential decay implemented 

with an IIR filter can be expressed by the following equation:  

𝑉[𝑡 + 1] = 𝛼𝑉[𝑡] (1) 

where, t represents the index of the time step, and  

𝑉[𝑡] represent the previous value of V and the IIR filter 

constant 𝛼 is defined as: 

𝛼 =
𝜏

𝜏 + 1
 (2) 

where, τ is the time constant (in clock cycles) and the decay d 

is given by: 

𝑑 = 𝑉[𝑡] − 𝑉[𝑡 + 1] =
𝑉[𝑡]

𝜏 + 1
 (3) 

When τ is large, 𝛼 is only a little less than 1, and a large 

number of bits are needed to encode its value accurately in a 

digital system. If the number of bits used to encode V is less 

than, the number of bits used to encode 𝛼, the above recursive 

multiplication just results in a linear decay.  

This situation occurs, for example, when simulating a 

neural network with many millions of neurons using time 

multiplexing [7]–[10]. With a standard IIR filter approach, a 

large number of bits would be needed for each state variable to 

achieve enough resolution to calculate long time constants. 

Large memory storage per state variable will result in a 

communication bottleneck, since only a few bits can be 

exchanged with the memory in a single clock cycle. 

B. Stochastic decay  

Instead of implementing the IIR multiplication directly, we 

can instead multiply V, encoded with much fewer bits than 𝛼, 

by the IIR factor 𝛼 and then add a random number r to the 

multiplication result. Mathematically, the method can be 

written as: 

𝑉[𝑡 + 1] = 𝑖𝑛𝑡(
𝜏

𝜏 + 1
𝑉[𝑡] + 𝑟[𝑡]) (4) 

where, r[t] is a random number drawn from a uniform 

distribution in the range (0,1). This is effectively a form of 

dithering to deal with the rounding of V to an integer value. 

For example, in our implementation discussed below we use 4 

bits for V, 7 bits for r, and 9 bits for 𝛼.  

 This work has been supported by the Australian Research Council 

Grant DP140103001. This work was inspired by the Capo Caccia 

Cognitive Neuromorphic Engineering Workshop 2014 and Telluride 

Neuromorphic workshop 2015. 

 

mailto:mark.wang@westernsydney.edu.au


The decay is then given by: 

𝑑 = 𝑉[𝑡] − 𝑉[𝑡 + 1] (5) 

    = 𝑉[𝑡] − 𝑖𝑛𝑡(
𝜏

𝜏 + 1
𝑉[𝑡] + 𝑟[𝑡]) (6) 

    = 𝑖𝑛𝑡 (
𝑉[𝑡]

𝜏 + 1
) + 𝑋[𝑡] (7) 

𝑝 = 𝑃(𝑋[𝑡] = 1) =
𝑉[𝑡]

𝜏 + 1
%1 (8) 

where 𝑋[𝑡] is a random binary variable, 𝑝 is the probability 

that 𝑋[𝑡] = 1, % is the modulo operation and 𝑖𝑛𝑡 (𝑉[𝑡]/(𝜏 +
1)) is the integer part of 𝑉[𝑡]/(𝜏 + 1). The expected value of 

X is given by (8), and simply represents the fractional part of 

𝑉[𝑡]/(𝜏 + 1). The expected value for the decay is thus the 

integer plus fractional part of 𝑉[𝑡]/(𝜏 + 1) and thus equal to 

the IIR decay in (3), but we now only need to store a few bits 

for V[t].  

C. Characterisation of variance 

Our stochastic approach not only reduces the storage 

needed, but also introduces variability between the STDP 

synapses, even when they time multiplex the exact same 

digital synapse. This variability makes the networks more 

realistic simulations of biological neural networks. Other 

digital implementations typically need to provide explicit 

sources of randomness when simulating neural networks.  

The stochastic part of the decay is fully determined by 

𝑋[𝑡], which is either 0 or 1. Thus the number of time steps 𝑛 it 

takes to get a single stochastic decrement is given by the 

geometric distribution: 

𝑃(𝑛) = (1 − 𝑝)𝑛−1𝑝  (9) 

The variance for this distribution is given by: 

𝑉𝑎𝑟(𝑛) =
1 − 𝑝

𝑝2
=

(𝜏 + 1)2

𝑉2
−

𝜏 + 1

𝑉
 (10) 

The variance is thus very large when 𝜏 is much larger than 

V. In (4), r is drawn from a uniform distribution in the range 

(0,1). Reducing the variance can be effectively achieved by 

limiting r in a smaller range as long as the following condition 

is met:    

𝛼𝑉 + 𝑚𝑖𝑛 (𝑟) < 𝑉 (11) 

Otherwise V will not decay. It is obvious that this 

condition is most critical when V is 1. For digital 

implementations, the most efficient way to generate random 

numbers is to use linear feedback shift registers (LFSRs), 

which do not have the value 0 as a possible output. Thus we 

can express this condition (with V = 1) as: 

𝜏

𝜏 + 1
+ min (𝑟) =

𝜏

𝜏 + 1
+

1

2𝐿
< 1 (12) 

𝜏 < 2𝐿 − 1 (13) 

where, L is the length of the LFSR. For example, the 

maximum time constant that a 5-bit LFSR can achieve is 30 

clock cycles. Using a 9-bit LFSR for the same time constant 

will create much larger variances (see Fig. 1). Hence the 

principle to reduce the variances is to use the LFSR with the 

minimum length that can still achieve the time constant.   

 
Fig. 1. Exponential decay obtained by using the 

stochastic approach. Here we use a 1 ms clock cycle. The 

dashed line is the IIR decay trace with a time constant 𝜏 of 

30 ms (𝛼 = 495/512, a 9-bit number). V is stored as a 4-bit 

integer with an initial value of 15. (a) An example 

exponential achieved when using a 5-bit LFSR; (b) All 

possible decays with a 5-bit LFSR with different seeds; 

and (c) Exponential decays achieved using a 9-bit LFSR 

and 1023 different random seeds. It is clear that the 

variance of the exponential decays achieved with the 9-bit 

LFSR is much larger than that with the 5-bit LFSR.  



III.HARDWARE IMPLEMENTATION 

A. Learning rule  

In our hardware implementation, the amount of synaptic 

modification is summarised by the following standard 

exponential STDP equations: 

𝛥𝑤 = {
𝐴+𝑒𝑥𝑝(𝛥𝑡/𝜏+),  𝑖𝑓 𝛥𝑡 < 0

−𝐴−𝑒𝑥𝑝(𝛥𝑡/𝜏−), 𝑖𝑓 𝛥𝑡 ≥ 0
 (14) 

where, 𝛥w is the modification of the synaptic weight, 𝛥t is the 

arrival time difference between the pre- and post-synaptic 

spike. A+ and A- determine the maximum amounts of synaptic 

modification for each spike pair. 𝜏 + and 𝜏 - are the time 

constants and control the rate of decay for potentiation and 

depression portions of the curve, respectively. As we focus on 

the low-cost hardware implementation of the exponential-type 

STDP, quantifying the effects of the STDP learning rules on 

the synaptic weights [11] are outside the scope of this paper. 

In the work reported here, we use 𝜏+= 𝜏-
 = 20 ms and A+=A- 

=1 throughout. Hence, the 𝛥w is simply V[t] in equation (4).  

B. Topology 

In our previous work [5], [6], we implemented a time 

multiplexed (TM) synaptic plasticity adaptor array that is 

separate from the neurons in the neural network. Each adaptor 

(in that array) performs synaptic plasticity, (such as STDP), 

according to the arrival times of the pre- and post-synaptic 

spikes assigned to it and sends out the updated weight to the 

post-synaptic neuron in the neural network. Since this strategy 

provides great flexibility for building complex large-scale 

neural networks, we chose to use the exact same architecture 

as in [6] to implement an exponential-type STDP adaptor 

array (see Fig. 2). It consists of a controller, a Master RAM, a 

TM STDP adaptor array and a TM exp-decay generator array, 

all of which, with the exception of the last one, are identical to 

ones presented in [6]. The TM adaptor array and the TM exp-

decay generator array are both configured to have 8192 (8k) 

units, each TM exp-decay generator being assigned to one TM 

STDP adaptor. Thus, the TM time window generator array in 

[6], which generates a linear decay, is replaced by the exp-

decay generator array in the work presented here.  

The exponential STDP adaptor array operates in the exact 

same manner as the digital synaptic adaptor array in [6]. The 

controller receives pre- and post-synaptic spikes from the 

neuron array and assigns them to the corresponding TM STDP 

adaptors according to their addresses. Each TM exp-decay 

generator will start an exponential decay when either a pre- or 

post-synaptic spike arrives, which will be used by the 

corresponding TM STDP adaptor to determine the weight 

update. As we assume that the adaption will not be carried out 

if the pre- and post- synaptic spikes arrive simultaneously, 

thus only one TM exp-decay generator will be needed. The 

STDP adaptor will carry out the weight adaption using its 

output V[t]. The weight values are stored in the local cache and 

the Master RAM. The stored weight values will also be sent 

out to the corresponding neuron in the neural network for the 

post-synaptic current generation.  

C. Time-multiplexed exponential decay generator array  

The decay generator array was implemented by using time 

multiplexing to achieve 8k TM exp-decay generators using 

only one physical exp-decay generator. The global counter 

processes each TM exp-decay generator sequentially. Each 

TM exp-decay generator uses a time slot of 25 clock cycles 

(125 ns with 200 MHz clock frequency) to complete its 

processing to maintain an update rate of 1 kHz (the 

corresponding time step is about 125 ns×8k=1 ms).  

In each time slot, the global counter will read the value of 

the V[t] (a 4-bit integer) from the Decay RAM with a size of 

8k×4bit. V[t] will be reset to Vinit (set to 15 here), when the 

digital input spike (Decay_start) from the TM adaptor is 

 
Fig. 2. The structure of the STDP adaptor array.  
  



active (high). When there is no input spike, we will apply the 

stochastic approach (see equation (4)) to V[t] in each time slot 

(of that TM exp-decay generator), until it reaches zero, 

indicating the end of the exponential decay.  

These computations were implemented with a single fixed-

point-number multiplier. Its inputs are 𝛼 (a 9-bit integer) and 

V[t] (4-bit), resulting in a 13-bit output value. To allow 

different time constants for different synapses, we use a 

multiplexer to choose from different 𝛼 s. Also for future 

extensions, we use a 7-bit LFSR to generate r, but the LFSR is 

configured to use only its five least significant bits in the work 

reported here. It will generate a new value every 1 ms. The 

integer part of the product, V[t+1], will then be stored into the 

exp-decay RAM.  

IV.MEASUREMENT RESULTS 

 We have successfully implemented the exponential-type 

STDP adaptor array on an Altera Cyclone V FPGA. Table I 

shows the utilisation of hardware resources on the FPGA. As 

Table I shows, the proposed system uses only a small fraction 

(<1%) of the hardware resources. 

We have tested the performance of the exponential-type 

STDP adaptor array by performing a balanced excitation 

experiment, based on the experiment run by [11]. Song et al. 

have shown that competitive Hebbian learning [12] can be 

performed through STDP [11]. The competition (induced by 

STDP) between the synapses can establish a bimodal 

distribution of the synaptic weights: either towards zero 

(weak) or the maximum (strong) values (see Fig. 3).  

V. CONCLUSIONS 

 In this paper, we demonstrated a digital implementation of 

the STDP learning rule using a novel stochastic approach. 

This approach is capable of producing the same results to a 

more complex STDP model while occupying only a fraction 

of the area. The compactness of the implementation plus the 

added stochasticity of the results presents a perfect solution for 

implementing synaptic learning in large-scale digital neural 

networks. 

VI.REFERENCES 

[1] W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner, “A 

neuronal learning rule for sub-millisecond temporal coding.,” Nature, 

vol. 383, no. 6595, pp. 76–81, Oct. 1996. 
[2] A. Bofill-i-petit and A. F. Murray, “Synchrony detection and 

amplification by silicon neurons with STDP synapses.,” IEEE Trans. 

Neural Netw., vol. 15, no. 5, pp. 1296–304, Sep. 2004. 
[3] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power 

spiking neurons and bistable synapses with spike-timing dependent 

plasticity.,” IEEE Trans. neural networks, vol. 17, no. 1, pp. 211–21, 

Jan. 2006. 

[4] T. J. Koickal, A. Hamilton, S. L. Tan, J. A. Covington, J. W. Gardner, 

and T. C. Pearce, “Analog VLSI Circuit Implementation of an Adaptive 
Neuromorphic Olfaction Chip,” IEEE Trans. Circuits Syst. I Regul. 

Pap., vol. 54, no. 1, pp. 60–73, Jan. 2007. 

[5] R. Wang, T. J. Hamilton, J. Tapson, and A. van Schaik, “A compact 
reconfigurable mixed-signal implementation of synaptic plasticity in 

spiking neurons,” in 2014 IEEE International Symposium on Circuits 

and Systems (ISCAS), 2014, pp. 862–865. 
[6] R. M. Wang, T. J. Hamilton, J. C. Tapson, and A. van Schaik, “A 

neuromorphic implementation of multiple spike-timing synaptic 

plasticity rules for large-scale neural networks,” Front. Neurosci., vol. 9, 
no. May, pp. 1–17, 2015. 

[7] R. M. Wang, T. J. Hamilton, J. C. Tapson, and A. van Schaik, “A 

mixed-signal implementation of a polychronous spiking neural network 
with delay adaptation.,” Front. Neurosci., vol. 8, no. March, p. 51, Jan. 

2014. 

[8] R. Wang, G. Cohen, K. M. Stiefel, T. J. Hamilton, J. Tapson, and A. van 

Schaik, “An FPGA Implementation of a Polychronous Spiking Neural 

Network with Delay Adaptation.,” Front. Neurosci., vol. 7, no. 

February, p. 14, Jan. 2013. 
[9] R. Wang, T. J. Hamilton, J. Tapson, and A. van Schaik, “A compact 

neural core for digital implementation of the Neural Engineering 

Framework,” in BIOCAS2014, 2014. 
[10] R. Wang, T. J. Hamilton, J. Tapson, and A. van Schaik, “An FPGA 

design framework for large-scale spiking neural networks,” in 2014 

IEEE International Symposium on Circuits and Systems (ISCAS), 2014, 
pp. 457–460. 

[11] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian learning 
through spike-timing-dependent synaptic plasticity.,” Nat. Neurosci., 

vol. 3, no. 9, pp. 919–26, Sep. 2000. 

[12] D. Hebb, The organization of behavior. New York, NY: Wiley & Sons, 
1949.  

TABLE I 

Device utilisation Altera Cyclone 5CGXFC5C6F27C7 

Layers ALMs RAMs DSPs 

1 246/29080 192k/4.5M 1/450 

 

Fig. 3. Balanced excitation experiment. (a) Weight 

distribution after 1s of STDP for an input rate of 10 Hz. 

The bimodal distribution of strong and weak weights is 

apparent; (b) Scatter plot of the final weight distribution. 


