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Email: wangyinan@nudt.edu.cn, hakanj@isy.liu.se, xuhui@nudt.edu.cn

Abstract—The bandwidth of the sampling systems, especially
for time-interleaved analog-to-digital converters, needs to be
extended along with the rapid increase of the sampling rate.
A digitally assisted technique becomes a feasible approach to
extend the analog bandwidth, as it is impractical to implement
the extension in analog circuits. This paper derives accurate order
estimation formulas for the bandwidth extension filter, which is
designed in the minimax sense with the ripple constraints as the
design criteria. The derived filter order estimation is significant
in evaluating the computational complexity from the viewpoint
of the top-level system design. Moreover, with the proposed
order estimates, one can conveniently obtain the minimal order
that satisfies the given ripple constraints, which contributes to
reducing the design time. Both the performance of the extension
filter and its order estimation are illustrated and demonstrated
through simulation examples.

I. INTRODUCTION

Analog-to-digital converters (ADCs) are generally required
to perform with the flat frequency response up to the Nyquist
band in many applications [1]. It is however getting difficult
for high-speed ADCs to satisfy this requirement due to either
the front-end pre-amplifier or the sample-and-hold circuits
in the converters. Especially for time-interleaved sampling
systems, where the sampling rate is increased by a factor that
equals the number of the interleaved channels, the effective
bandwidth is however not proportionally increased as the sam-
pling rate but restricted by the sub-ADCs [2]–[4]. Increasing
the bandwidth appropriately can improve the measurement
performance [5]–[7]. Some oscilloscope companies (e.g., Tek-
tronix Inc, Agilent Inc, and Lecroy Inc) have developed this
function into their instruments but gave no detailed design
procedure [5]–[7]. In [8], the authors presented a gain com-
pensation method to improve the magnitude response flatness
based on several selected frequencies, however no approach for
finding the minimal order was proposed. In summary, there
is a lack of systematic design approaches with an accurate
estimation of the computational complexity for the bandwidth
extension of ADCs.

This paper derives order estimation formulas of the
minimax-designed finite-impulse-response (FIR) filter for ex-
tending the bandwidth of ADCs. The first advantage of the de-
rived order estimation is that one can evaluate the computation
complexity accurately, which is meaningful at the top-level
design of the overall digital signal processing systems. Fur-
thermore, one can substantially reduce the effort for searching

the minimal order that satisfies the ripple requirements, since
the estimates can offer a good initial value for the minimal
order. Comprehensive simulations are presented to validate the
performance of the derived order estimation formulas.

The rest of the paper is organized as follows. Section II
presents the design problem for bandwidth extension and the
minimax design. Section III presents the filter order estima-
tion by curve fitting. In Section IV, the minimax-designed
extension filter and its order estimation are verified through
simulation examples. Section V concludes this paper.

II. PROBLEM STATEMENT AND MINIMAX DESIGN

Figure 1(a) illustrates the principle of bandwidth extension
using a digitally assisted method. Assume that the analog input
signal xa(t) is bandlimited to ωe < π/Ts, i.e., its Fourier
transform satisfies Xa(jω) = 0, |ω| > ωe, where the sampling
period is Ts. The frequency response of the ADC is denoted as
Qc(jω) with a −3 dB cutoff angular frequency of ωc, which
satisfies ωc ≤ ωe < π/Ts (see the model in (8)). Sampling
the continuous-time signal xa(t) at uniform time instances will
generate the output sequence as v[n], the spectrum of which
is shaped by Qc(jω). Thus, in the frequency domain, we have

V
(
ejωTs

)
=

1

Ts
Xa (jω)Qc (jω) , ωTs ∈ [−π, π], (1)

where V
(
ejωTs

)
represents the discrete-time Fourier trans-

form (DTFT) of v[n]. It is apparent that the original input
signal is deteriorated by the non-ideal frequency response of
the ADC. In order to enhance the flatness within the desired
passband frequency region [0, ωeTs] as well as the capability
for suppressing the distortion and noise outside the passband,
a digital filter hr[n] is employed to equalize the ADC’s
frequency response. The frequency response of hr[n] with an
order of N is denoted as Hr

(
ejωTs

)
=
∑N
n=0 hr[n]e−jωTsn.

Therefore the equalized output response Qe(jω) through the
expansion filter is ideally to have a unity gain in the extended
passband and infinite attenuation in the remaining stopband,
thus we have1

Qe(jω) =

{
e−jωTs

N
2 ωTs ∈ [0, ωeTs]

0 ωTs ∈ (ωeTs, π].
(2)

1Here, the desired passband response is e−jωTs
N
2 instead of unity to take

the delay of the extension filter into account.
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Fig. 1. (a) Principle of bandwidth extension using a digitally assisted tech-
nique. (b) Specification for the extension filter in the minimax sense.

In practice, one can only approximate the ideal response, and
in this paper we approximate it in the minimax sense.

A. Minimax Design

Figure 1(b) shows the specification for the bandwidth ex-
tension filter designed in the minimax sense. Here, δp and
δs represent the ripples of the passband and the stopband,
respectively. To enable a practical minimax design, an addi-
tional transition band is introduced as ∆ω . Thus we have the
specification of the extension filter as∣∣Rc (ejωTs

)
−Qe(jω)

∣∣ ≤ δp, ωTs ∈ [0, ωeTs]∣∣Rc (ejωTs
)∣∣ ≤ δs, ωTs ∈ [ωeTs + ∆ωTs, π], (3)

where Rc
(
ejωTs

)
is given by

Rc
(
ejωTs

)
= Hr

(
ejωTs

)
Qc (jω) . (4)

In order to meet the given specification in (3), the extension
filter is here designed by solving the following approximation
problem: For a given filter order N , find the filter coefficient
hr[n] and δ so as to minimize δ

subject to |E (jωTs)| < δ, (5)

on ωTs ∈ [0, ωeTs] ∪ [ωeTs + ∆ωTs, π], where E (jωTs) is
the weighted error function as given by

E (jωTs) = W (ωTs)
[
Rc
(
ejωTs

)
−Qe(jω)

]
(6)

and

W (ωTs) =

{
1 ωTs ∈ [0, ωeTs]

δp/δs ωTs ∈ [ωeTs + ∆ωTs, π].
(7)

It is worth noting that this approximation problem is a
convex problem, which means that one can obtain the globally
optimal solution in the minimax sense. The corresponding
finite-dimensional linear programming problem is solved by
using standard optimization methods [9], and in this paper
we utilize the general-purpose fminimax in Matlab as well
as the real-rotation theorem [10], which states that minimiz-
ing |E(jωTs)| is equivalent to minimizing <{E(jωTs)e

jΘ},
∀ Θ ∈ [0, 2π]. The optimization problem is then solved with
discretized ωTs and Θ. Typically, about 200-500 discrete grid

points of ωTs and 10-20 grid points of Θ are dense enough
to satisfy the requirements.

III. FILTER ORDER ESTIMATION

From the practical perspective, it is desired to utilize the
minimal filter order that can meet the given constraints on the
ripples of the passband and the stopband. For this purpose,
we derive the order estimates for the extension filter in this
section. Before giving the details of the filter order estimation,
it is noted that the ADC’s frequency response is modeled by a
first-order RC circuit, which has been indicated as a reasonable
assumption for many applications [11]–[13]. Then we have

Qc(jω) =
1

1 + jω 1
2πfc

, (8)

where fc = ωc/2π represents the 3-dB cutoff frequency.
Furthermore, we define the weighting ratio and the extension
ratio respectively as

Wr = δp/δs and α = ωe/ωc. (9)

The filter order estimates are approached in two steps, which
are presented as follows. In the first step, we determine the
basic form of the filter order estimation through numerous
designs obtained according to the minimax sense in Section
II-A with various transition bandwidths, weighting ratios, as
well as expansion ratios. According to the numerous design
examples, we have observed the basic form as

Nest = − log10(Pδ)

Υ(∆ω,Wr)
+ Γ(∆ω,Wr, α), (10)

where the order estimation is dependent on the product of the
ripples Pδ = δpδs and the functions Υ as well as Γ. Further,
it is observed that Υ is mainly dependent on ∆ω and Wr, and
thus denoted as Υ(∆ω,Wr), whereas Γ(∆ω,Wr, α) represents
a function of ∆ω , Wr, and α as well.

Before giving the detailed procedure of the second step,
it is necessary to discuss the reasonable range of values
for Pδ , ∆ω , Wr, and α. Considering a common acquisition
system or ADC, the possible extended passband ωeTs is
typically located within [0.6π, 0.9π], and ωcTs ≤ ωeTs. Thus
we have the rational expansion ratio as α ∈ [1, 1.5]. For
the weighting ratio, it is typically satisfied with the ripple
magnitude ranging from −100 dBc to −20 dBc (i.e., we have
δp, δs ∈ [0.00001, 0.1]) [14], [15].2 Therefore the product and
the weighting ratio of the ripples are within [10−10, 10−2]
and [10−4, 104], respectively. Furthermore, we focus on the
transition bandwidth within ∆ωTs ∈ [0.05π, 0.15π]. In the
future we will address more narrow transition band, which
typically requires additional care [15].3

Under the above assumptions, we can get the specific esti-
mation functions for Υ(∆ω,Wr) and Γ(∆ω,Wr, α) that can

2Although very small δp may be of less interest in actual sampling systems,
it is included here for completeness.

3More narrow transition bandwidths (smaller than 0.05π) are not generally
utilized in practical applications, since it substantially increases the computa-
tional complexity. Furthermore, it is worth noting that one has to use much
more complicated estimate functions for more narrow transition bands [15].



TABLE I. Estimated Parameters for Υ and Γ

Region
P values for Υ Q values for Γ

P1 P2 P3 P4 Q1 Q2 Q3 Q4 Q5

Region 1 (Wr ≥ 1) 0.9155 1.1199 −0.0027 0.0098 −0.1682 0.5913 2.0607 11.1035 −6.115

Region 2 (Wr < 1) 1.2041 1.2962 −0.0019 0.0174 −0.1023 0.9368 2.8292 11.7762 −8.725

be determined through curve fitting by discretizing Pδ , ∆ω ,
Wr, and α in their respective range. Various criteria can be
employed for such curve fitting. Here we solve the curve fitting
problem in the minimax sense as well. Therefore, in the fitting
procedure, the function form and its parameters are determined
by minimizing the maximum deviation between the estimated
filter order and the actual order, i.e., we minimize ε

subject to |Nest(i, j, k, l)−N(i, j, k, l)| < ε

∀ i ∈ [1, 2, ..., I], j ∈ [1, 2, ..., J ],

k ∈ [1, 2, ...,K], l ∈ [1, 2, ..., L]. (11)

where Nest(i, j, k, l) is given by

Nest(i, j, k, l) = −
log10(P̄

(l)
δ )

Υ(∆
(i)
ω ,W

(j)
r )

+ Γ(∆(i)
ω ,W (j)

r , α(k)),

(12)
where ∆

(i)
ω , W (j)

r , α(k), and P (l)
δ are discretized into I , J , K,

and L grid points within its given range, respectively. Here,
N(i, j, k, l) represents the actual filter order under the specific
design parameters of ∆

(i)
ω , W (j)

r , α(k), and P
(l)
δ , whereas

Nest(i, j, k, l) is calculated with the obtained ripples δ̄p and δ̄s
as P̄ (l)

δ = (δ̄pδ̄s)
(l) and the design parameters of ∆

(i)
ω , W (j)

r ,
and α(k).

According to our observation based on numerous designs,
the estimates for the Υ and Γ functions are divided into two
regions that are distinguished by the value of Wr, namely{

Wr ≥ 1 Region 1

Wr < 1 Region 2.
(13)

For Region 1, the Υ and Γ are given, respectively, as

Υ = P1 ×∆P2
ω + P3 × log10(Wr) + P4 (14)

and

Γ =

(
Q1

∆ω
+Q2

)
× (1 + log10(Wr))

Q3 +Q4(α− 1) +Q5.

(15)
For Region 2, the Wr in the above functions of Υ and Γ
should be replaced by 1/Wr. Further the best values of P
and Q obtained in the minimax sense are given in Table I,
where ∆

(i)
ω , W (j)

r , α(k), and P (l)
δ are discretized into 10 grid

points within the given range for the optimization. From the
results, we can note that the order is largely dependent on ∆P2

ω

with an inversely proportional relation. This is similar to the
order estimate of a regular FIR filter [14], which however is
independent of α and inversely proportional to ∆ω . Hence, the
derived order estimation formulas for the bandwidth extension
filter are much more accurate than [14], [15]. This will be
further illustrated in Section IV.

(a)

(b)

Fig. 2. Approximation-error modulus for the minimal-order filters. The black
curves represent 20 log10 |Rc(ejωTs ) − 1|, whereas the red curves show
20 log10 |Hr(ejωTs )|. (a) Nmin = 48 and Wr = 103. (b) Nmin = 57
and Wr = 10−3.

IV. DESIGN EXAMPLES

We first briefly discuss the design procedure for the exam-
ples. 1) With the given constraints of δp and δs as well as ∆ω

and α, calculate Wr and then Nest according to the derived
estimates. 2) Design the bandwidth extension filter hr[n] of
order Nest, and then search around Nest to find the minimal
order, sayNmin, for which the given constraints are met.

Example 1: We configure ωcTs = 0.7π, ωeTs = 0.8π, and
∆ωTs = 0.1π. First, the ripples constraints are set as δp = 0.1
and δs = 0.0001, thus Wr = 103 that belongs to Region
1. Therefore, Nest is calculated as 46.75 and rounded to the
nearest integer 47. The bandwidth extension filter is designed
in the minimax sense as presented in Section II-A, and we
obtain the ripples as δ̄p = −19.16 dB and δ̄s = −79.16 dB.
Since the given constraints are not satisfied, we increase the
filter order to find Nmin. One obtains δ̄p = −20.33 dB and
δ̄s = −80.33 dB with the minimal order of 48, where the
approximation errors are illustrated in Fig. 2(a). Further we
switch the ripple constraints as δp = 0.0001 and δs = 0.1.
Then we have Nest = 57.49 by using the P and Q values for
Region 2. The hr[n] is designed with 57, and the performance
achieves δ̄p = −80.23 dB and δ̄s = −20.23 dB. Here, the
minimal order is Nmin = 57, and the approximation errors
are depicted in Fig. 2(b).

We can observe the necessity for dividing the Υ and Γ
functions into two regions, which is due to the unbalanced
efforts paid on the passband and the stopband. Since the
extended passband is generally far wider than the stopband,
one needs to pay more complexity to reduce the passband
ripple than the stopband ripple. Furthermore, if we design



a regular FIR low-pass filter with a passband edge at 0.8π
and transition band of 0.1π, to achieve the same ripple
performance as in Fig. 2(a) and (b), the orders of 42 and
53 are required, respectively. Hence, one has to pay more
complexity to extend the bandwidth than to design a regular
FIR filter, which means that the order estimations available
for the regular FIR filters, [14], [15], are not accurate for the
bandwidth extension filter. In Fig. 3(a), we also indicate the
necessity of the derived order estimates for the bandwidth
extension filter, where the purple dotted lines indicate the
estimations for regular FIR filters as in [14] with the same
ripple requirements and transition bandwidth.

Example 2: To comprehensively validate the proposed filter
order estimation, we verify its performance with various δp,
δs, ∆ω , and α, which is graphically exemplified in Fig. 3. First
we verify the estimation accuracy for different expansion ratios
as depicted in Fig. 3(a), where ∆ωTs = 0.05π. In Fig. 3(b),
we show the performance with different transition bandwidths,
whereas other parameters are set as ωcTs = 0.66π and
ωeTs = 0.8π. Furthermore, we simulate with various δp and
δs as shown in Fig. 3(c), where we configure ωcTs = 0.65π,
ωeTs = 0.85π, and ∆ωTs = 0.1π. From Fig. 3, it is observed
that the estimated order Nest matches well with the actual
minimal order Nmin under various conditions.

V. CONCLUSIONS

A bandwidth extension method for ADCs, utilizing FIR
filters designed in the minimax sense, was proposed. We
derived the estimation of the order requirement to meet a given
specification in terms of Pδ , ∆ω , Wr, and α. Simulation results
indicate the estimation accuracy. With the derived formulas,
one can achieve an accurate complexity assessment at the top-
level design of the overall systems and conveniently find the
minimal order that helps in reducing the design time.
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