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Abstract—Subspace learning is an important problem, which
has many applications in image and video processing. It can
be used to find a low-dimensional representation of signals
and images. But in many applications, the desired signal is
heavily distorted by outliers and noise, which negatively affect
the learned subspace. In this work, we present a novel algorithm
for learning a subspace for signal representation, in the presence
of structured outliers and noise. The proposed algorithm tries
to jointly detect the outliers and learn the subspace for images.
We present an alternating optimization algorithm for solving
this problem, which iterates between learning the subspace and
finding the outliers. This algorithm has been trained on a large
number of image patches, and the learned subspace is used for
image segmentation, and is shown to achieve better segmentation
results than prior methods, including least absolute deviation
fitting, k-means clustering based segmentation in DjVu, and shape
primitive extraction and coding algorithm.

I. INTRODUCTION

Many of the signal and image processing problems can
be posed as problems of learning a low dimensional linear
or multi-linear model. Algorithms for learning linear models
can be seen as a special case of subspace fitting. Many
of these algorithms are based on least squares estimation
techniques, such as principal component analysis (PCA) [1],
linear discriminant analysis (LDA) [2], and locality preserving
projection [3]. But in general, training data may contain
undesirable artifacts due to occlusion, illumination changes,
overlaying component (such as foreground texts and graphics
on top of smooth background image). These artifacts can be
seen as outliers for the desired signal. As it is known from
statistical analysis, algorithms based on least square fitting
fail to find the underlying representation of the signal in
the presence of outliers [4]. Different algorithms have been
proposed for robust subspace learning to handle outliers in the
past, such as the work by Torre [5], where he suggested an
algorithm based on robust M-estimator for subspace learning.
Robust principal component analysis [6] is another approach
to handle the outliers. In [7], Lerman et al proposed an
approach for robust linear model fitting by parameterizing
linear subspace using orthogonal projectors. There have also
been many works for online subspace learning/tracking for
video background subtraction, such as GRASTA [8], which
uses a robust `1-norm cost function in order to estimate
and track non-stationary subspaces when the streaming data
vectors are corrupted with outliers, and t-GRASTA [9], which
simultaneously estimate a decomposition of a collection of
images into a low-rank subspace, and sparse part, and a
transformation such as rotation or translation of the image.

Fig. 1: The left, middle and right images denote the original
image, segmented foreground by hierarchical k-means and the
proposed algorithm respectively.

In this work, we present an algorithm for subspace learning
from a set of images, in the presence of structured outliers and
noise. We assume some structure on outliers that suits many of
the image processing applications, which is connectivity and
sparsity. As a simple example we can think of smooth images
overlaid with texts and graphics foreground, or face images
with occlusion (as outliers). To promote the connectivity of
the outlier component, the group-sparsity [10] of outlier pixels
is added to the cost function (It is worth mentioning that
total-variation [11] can also be used to promote connectiv-
ity). We also impose the smoothness prior on the learned
subspace representation, by penalizing the gradient of the
representation. We then propose an algorithm based on the
sparse decomposition framework for subspace learning. This
algorithm jointly detect the outlier pixels and learn the low-
dimensional subspace for underlying image representation.

After learning the subspace, we present its application for
background-foreground segmentation in still images, and show
that it achieves better performance than previous algorithms.
We compare our algorithm with some of the prior approaches,
including k-means clustering in DjVu [12], shape primitive
extraction and coding (SPEC) [13], least absolute deviation
fitting (LAD) [14]. The proposed algorithm has applications
in text extraction, medical image analysis, and image decom-
position [15]-[19].

One problem with previous clustering-based segmentation
techniques is that if the intensity of background pixels has
a large dynamic range, some part of the background could
be segmented as foreground, but our proposed model can
correctly segment the image. One such example is shown in
Fig. 1, where the foreground mask (a binary mask showing the
location of foreground pixels) for a sample image by clustering
and our algorithm are shown.

The structure of the rest of this paper is as follows: Section
II presents the proposed framework for subspace learning.
The detail of alternating optimization problem is presented
in Section II. A, and the application of this framework for
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image segmentation is presented in II. B. Section III provides
the experimental results for the proposed algorithm and its
application for image segmentation. And finally the paper is
concluded in Section IV.

II. THE PROBLEM FORMULATION

Despite the high-dimensionality of images (and other kind
of signals), many of them have a low-dimensional represen-
tation. For some category of images, this low-dimensional
representation may be a very complex manifold which is not
simple to find, but for many of the smooth images this low-
dimensional representation can be assumed to be a subspace.
Therefore each signal x ∈ RN can be efficiently represented
as:

x ' Pα (1)

where P ∈ RN×k where k � N , and α denotes the
representation coefficient in the subspace.
There have been many approaches in the past to learn P
efficiently, such as PCA and robust-PCA. But in many scenar-
ios, the desired signal can be heavily distorted with outliers
and noise, and those distorted pixels should not be taken into
account in subspace learning process, since they are assumed
to not lie on the desired signal subspace. Therefore a more
realistic model for the distorted signals should be:

x = Pα+ s+ ε (2)

where s and ε denote the outlier and noise components respec-
tively. Here we propose an algorithm to learn a subspace, P ,
from a training set of Nd samples xi, by minimizing the noise
energy (‖εi‖22 = ‖xi − Pαi − si‖22), and some regualrization
term on each component, as:

min
P,αi,si

Nd∑
i=1

1

2
‖xi − Pαi − si‖22 + λ1φ(Pαi) + λ2ψ(si)

s.t. P tP = I, si ≥ 0

(3)

where φ(.) and ψ(.) denote suitable regularization terms on the
first and second components, promoting our prior knowledge
about them. Here we assume the underlying image component
is smooth, therefore it should have a small gradient. And for
the outlier, we assume it is sparse and also connected, therefore
we need to promote the sparsity and connectivity [22]. Hence
φ(Pαi) = ‖∇Pαi‖22, and ψ(s) = ‖s‖1 + β

∑
m ‖sgm‖2,

where gm shows the m-th group in the outlier (the pixels
within each group are supposed to be connected).
Putting all these together, we will get the following optimiza-
tion problem:

min
P,αi,si

Nd∑
i=1

1

2
‖xi − Pαi − si‖22 + λ1‖∇Pαi‖22 + λ2‖si‖1 + λ3

∑
m

‖si,gm‖2

s.t. P tP = I, si ≥ 0
(4)

Here by si ≥ 0 we mean all elements of the vector si should be
non-negative. Note that ‖∇Pαi‖22 denotes the spatial gradient,
which can be written as:

‖∇Pαi‖22 = ‖DxPαi‖22 + ‖DyPαi‖22 = ‖DPαi‖22 (5)

where Dx and Dy denote the horizontal and vertical derivative
matrix operators, and D = [Dt

x, D
t
y]
t.

A. The Alternating Optimization Approach
The optimization problem in Eq (4) can be solved using

alternating optimization over αi, si and P . In the following
part, we present the update rule for each variable by setting
the gradient of cost function w.r.t that variable to zero.
The update step for αi would be:

α∗i = argmin
αi

{1
2
‖xi − Pαi − si‖22 +

λ1

2
‖DPαi‖22 = Fα(αi)} ⇒

∇αiFα(α
∗
i ) = 0⇒ P t(Pα∗i + si − xi) + λ1P

tDtDPα∗i = 0⇒
α∗i = (P tP + λ1P

tDtDP )−1P t(xi − si)

The update step for the m-th group of the variable si is as
follows:

si,gm = argmin
si

{1
2
‖(xi − Pαi)gm − si,gm‖

2
2 + λ2‖si,gm‖1+

λ3‖si,gm‖2 = Fs(si,gm)} s.t. si,gm ≥ 0

⇒ ∇si,gmFs(si,gm) = 0⇒ si,gm + (Pαi − xi)gm + λ2sign(si,gm)

+ λ3
si,gm
‖si,gm‖2

= 0⇒ si,gm + λ3
si,gm
‖si,gm‖2

= (xi − Pαi)gm − λ21

⇒ si,gm = block-soft((xi − Pαi)gm − λ21, λ3)

Note that, because of the constraint si,gm ≥ 0, we can
approximate sign(si,gm) = 1, and then project the si,gm from
soft-thresholding result onto si,gm ≥ 0, by setting its negative
elements to 0. The block-soft(.) [23] is defined as:

block-soft(y, t) = max(1− t

‖y‖2
, 0) y

For the subspace update, we first ignore the orthonormality
constraint (P tP = I), and update the subspace column
by column, and then use Gram-Schmidt algorithm [25] to
orthonormalize the columns. If we denote the j-th column of
P by pj , its update can be derived as:

P = argmin
P

{
∑
i

1

2
‖xi − Pαi − si‖22 + λ1‖DPαi‖22} ⇒

pj = argmin
pj

{
∑
i

1

2
‖(xi −

∑
k 6=j

pkαi(k)− si)− pjαi(j)‖22+

λ1‖D
∑
k 6=j

pkαi(k) +Dpjαi(j)‖22 =
∑
i

1

2
‖ηi,j − pjαi(j)‖22+

λ1‖γi,j +Dpjαi(j)‖22 = Fp(pj)} ⇒ ∇pjFp(p
∗
j ) = 0⇒∑

i

αi(j)
(
αi(j)pj − ηi,j

)
+ λ1αi(j)D

t(αi(j)Dpj + γi,j
)
= 0⇒(∑

i

α2
i (j)

)
(I + λ1D

tD)pj =
∑
i

(
αi(j)ηi,j − λ1αi(j)D

tγi,j
)
= βj

⇒ pj = (I + λ1D
tD)−1βj/

(∑
i

α2
i (j)

)
where ηi,j = xi − si −

∑
k 6=j pkαi(k), and γi,j =

D
∑
k 6=j pkαi(k). After updating all columns of P , we apply

Gram-Schmidt algorithm to project the learnt subspace onto
P tP = I . Note that orthonormalization should be done at
each step of alternating optimization. It is worth to mention
that for some applications the non-negativity assumption for
the structured outlier may not be valid, so in those cases we
will not have the si ≥ 0 constraint. In that case, the problem
can be solved in a similar manner, but we need to introduce
an auxiliary variable s = z, to be able to get a simple update
for each variable.



B. Applications For Image Segmentation

After learning the subspace, it can be used for different
applications, such as segmentation and classification of sig-
nals. Here we use this framework for background-foreground
segmentation in still images. Suppose we want to separate
the foreground texts and graphics from background regions.
We can think of foreground as the outliers overlaid on top
of background, and use the learned subspace along with the
following sparse decomposition framework to separate them:

min
α,s

1

2
‖x− Pα− s‖22 + λ1‖DPα‖22 + λ2‖s‖1 + λ3

∑
m

‖sgm‖2

s.t. s ≥ 0
(6)

In our image segmentation problem, the m-th column of each
block is chosen as the m-th group, gm. The reason being
there are more vertical connectivity in English texts than
horizontal. We could also impose both column-wise and row-
wise connectivity, but it would require introducing auxiliary
variables in the optimization framework. The problem in
(6) can be easily solved using ADMM [23], and proximal
optimization [24]. After solving this problem, the s component
will be thresholded to find the foreground position.

III. EXPERIMENTAL RESULTS

To evaluate the performance of our algorithm, we trained the
proposed framework on image patches extracted from some of
the images of the screen content image segmentation dataset
provided in [14]. Before showing the results, we will report
the weight parameters in our optimization. We used λ1 = 0.5,
λ2 = 1 and λ3 = 2, which are tuned by testing on a validation
set. We provide the results for subspace learning and image
segmentation in the following sections.

A. The Learned Subspace

We extracted around 8,000 overlapping patches of size
32x32, with stride of 5 from a subset of these images and used
them for learning the subspace, and learned a 64 dimensional
subspace (which means 64 basis images of size 32x32). The
learned atoms of this subspace are shown in Figure 2.

As we can see the learned atoms contain different edge and
texture patterns, which is reasonable for image representation.
The right value of subspace dimension highly depends to the
application. For image segmentation problem studied in this
paper, we found that using only first 20 atoms performs well
on image patches of 32x32. The experiments are performed
using MATLAB 2015 on a laptop with Core i5 CPU running at
2.2GHz. It takes around 78 seconds to learn the 64 dimensional
subspace.

B. Applications in Image Segmentation

After learning the subspace, we use this representation
for background-foreground segmentation in still images, as
explained in Section II.B. The segmentation results in this
section are derived by using a 20 dimensional subspace for
background modeling. We use the same model as the one in

Fig. 2: The learned 64 basis images (a subspace of dimension
64) for 32x32 image blocks

Eq (6) for decomposition of an image into background and
foreground, and λi’s are set to the same value as mentioned
before. We then evaluate the performance of this algorithm on
the remaining images from screen content image segmentation
dataset [26], and some other images, and compare the results
with three previous algorithms; hierarchical k-means clustering
in DjVu [12], SPEC [13], sparse and low-rank decomposition
[21], and LAD [14]. For sparse and low rank decomposition,
we apply the fast-RPCA algorithm [21] on the image blocks,
and threshold the sparse component to find the foreground
location. For low-rank decomposition, we have used the MAT-
LAB implementation provided by Stephen Becker at [27].

To provide a numerical comparison, we report the average
precision, recall and F1 score [28] achieved by different
algorithms over this dataset. The average precision, recall and
F1 score by different algorithms are given in Table 1.

TABLE I: Comparison of accuracy of different algorithms

Segmentation Algorithm Precision Recall F1 score
SPEC [13] 50% 64% 56.1%
Hierarchical Clustering [12] 64% 69% 66.4%
Low-rank Decomposition [21] 78% 86.5% 82.1%
Least Absolute Deviation [14] 91.4% 87% 89.1%
The proposed algorithm 93% 86% 89.3%

The precision and recall are defined as in Eq. (7), where
TP, FP and FN denote true positive, false positive and false
negative respectively. In our evaluation, we treat a foreground
pixel as positive. The balanced F1 score is defined as the
harmonic mean of precision and recall, as it is shown in Eq
8.

Precision =
TP

TP+FP
, Recall =

TP
TP+FN

(7)

F1 = 2
precision× recall
precision+recall

(8)

As it can be seen, the proposed scheme achieves much higher
precision and recall than hierarchical k-means clustering and
SPEC algorithms. Compared to the least absolute deviation fit-
ting, the proposed formulation has slightly better performance.



Fig. 3: Segmentation result for the selected test images.
The images in the first to sixth rows denote the original
image, and the foreground map by shape primitive extraction
and coding, hierarchical k-means clustering, sparse and low-
rank decomposition, least absolute deviation fitting and the
proposed algorithm respectively.

To see the visual quality of the segmentation, the results for
3 test images (each consisting of multiple 64×64 blocks) are
shown in Fig. 3. It can be seen that the proposed algorithm
gives superior performance over DjVu and SPEC in all cases.
There are also noticeable improvement over least absolute
deviation (LAD) fitting and low-rank decomposition in one
of the images. We would like to note that, this dataset
mainly consists of challenging images where the background
and foreground have overlapping color ranges. For simpler
cases where the background has a narrow color range that is
quite different from the foreground, DjVu, LAD and low-rank
decomposition will work well.

IV. CONCLUSION

This paper proposed a subspace learning algorithm for a set
of smooth signals in the presence of structured outliers and
noise. The outliers are assumed to be sparse and connected,
and suitable regularization terms are added to the optimization
framework to promote this properties. We then solve the
optimization problem by alternatively updating the model
parameters, and the subspace. We also show the application
of this framework for background-foreground segmentation
in still images, where the foreground can be thought as the
outliers in our model, and achieve better results than the
previous algorithms for background/foreground separation.
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