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Abstract—Hierarchical Temporal Memory (HTM) is a compu-
tational model of the neocortex that is capable of online learning
to predict and detect anomalies from continuous data streams. To
make HTM also available on power-constrained robot systems,
we investigate the feasibility of implementing the model on
SpiNNaker, a fully programmable energy-efficient neuromorphic
many core system. Our contribution is twofold: First, we propose
a mapping of the HTM model components to the SpiNNaker
chip architecture. Second, a prototypic implementation of this
mapping is successfully evaluated for different sets of model
parameters.

I. INTRODUCTION

Hierarchical Temporal Memory (HTM) is an abstract neu-
ral model that is claimed to capture functional principles of
neocortical computation [1], [2]. It is capable of learning
online from continuous data streams to predict future input
and to detect anomalies. This makes the HTM model very
attractive for robotics where it could be used to predict future
sensor input for prospective control and to automatically detect
malfunction and failure. However, the low processing power
of embedded control units and the high power consumption of
modern CPUs and GPUs currently preclude running the model
at a practically relevant scale on mobile robot systems.

The poor performance of standard von Neumann micropro-
cessors at simulating neural networks motivated the develop-
ment of neuromorphic chip designs. Most current architectures
are specifically tailored to the simulation of spiking neuron
models and biologically plausible synaptic plasticity rules [3].
Accordingly, they outperform standard processors considerably
in terms of both simulation speed and power efficiency. This
makes it possible to set up physical closed-loop neurorobotic
systems [4] in which robots are directly connected to real-time
simulations of large-scale brain models such as those currently
developed in the European Human Brain Project [5], [6].

In spite of the general focus on spiking neural networks, not
all neuromorphic chip designs are limited to this class of neural
networks. The SpiNNaker architecture [7] is based on standard
ARM cores that can execute arbitrary user-defined code, which
makes it in principle also capable of simulating more abstract
brain models like HTM. Besides its power efficiency, another
special advantage of SpiNNaker over other architectures is its
flexible on-chip routing that scales from systems with only
a few cores to clusters with thousands of cores. Moreover,
SpiNNaker is already widely used in neurorobotics. Successful
applications include the control of a biomimetic robot arm
based on a spiking neural model of the cerebellum [8] and a
mobile neuromorphic robot platform [9].

Motivated by the successful case studies of using
SpiNNaker in neurorobotics, this paper reports on our work
on porting the HTM model to the SpiNNaker architecture.
Differently from a previous study that focused on converting
single HTM components to a spiking neuron representation
[10], our goal is to deliver an initial prototypic implementation
of the HTM algorithms that runs natively on the SpiNNaker
cores. The remainder of the paper is structured as follows: In
the next section, we provide a brief introduction to SpiNNaker
and HTM. In section III, we propose a mapping of the HTM
model components to a single SpiNNaker chip and briefly
describe our implementation of that mapping. The results of
an initial evaluation are summarized in section IV. Section V
finally concludes the paper and outlines the next steps that are
required to apply our initial prototype on a robot.

II. BACKGROUND: SPINNAKER AND HTM

The following two paragraphs summarize the most im-
portant aspects of the SpiNNaker architecture and the HTM
model. For more detailed descriptions, the reader is referred
to [7] and [1], [2], respectively.

SpiNNaker is a digital neuromorphic many core system.
Each chip is comprised of 18 ARM968 cores that run at
200 MHz, 128 MB shared memory, and on-chip router that
is optimized for packet communication based on the address
event representation protocol. All chips are interconnected
in a mesh with toroidal topology that can scale up to one
million processor cores. The cores exchange information via
the SpiNNaker Datagram Protocol (SDP). Communication is
performed asynchronously. In particular, there are no guar-
antees regarding packet ordering and packets may be even
dropped. The system is programmed in the C programming
language and only supports fixed point arithmetic. SpiNNaker
applications follow an event-driven programming scheme and
run without an operating system. Instead, every SpiNNaker
application is linked to the SpiNNaker Application Runtime
Kernel (SARK).

HTM is a machine learning model that is inspired by
the neocortex. The basic building blocks of the HTM model
are cells that can assume different discrete states. Cells are
grouped in columns of identical size. A set of columns forms a
region. All cells in a column receive binary input via a shared
proximal dendrite segment that is connected to a subset of
the input bits. A spatial pooler activates only those columns
in a region which receive sufficient input. On activation of a
column, active connections are positively reinforced. Similarly,
the temporal memory learns temporal patterns in the input data
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by reinforcing distal dendrite segments that connect a cell of
one column to cells in other columns in the region. Together,
these two mechanisms enable learning from continuous data
streams for prediction and anomaly detection. All input data
must be encoded in a sparse distributed representation.

III. IMPLEMENTATION

In the next subsections, we will discuss our implementation
of the HTM model as defined in [1] and [2] for the SpiNNaker
system. The focus is on an appropriate parallelization of
the HTM learning algorithms, which is a prerequisite for an
effective usage of SpiNNaker’s computational resources. At
many points, our implementation is different from the HTM
reference code by Numenta which is designed for standard
general purpose computers and therefore not compatible with
the SpiNNaker platform. Throughout the whole text, we con-
sider mapping one HTM region one SpiNNaker chip. In the
future, this scheme can be easily extended to running a network
of multiple regions on a SpiNNaker board and thereby making
full use of the modular hardware architecture. Our HTM
model for SpiNNaker is implemented in the C programming
language. While the core of the machine learning system
follows a structured and imperative programming paradigm,
the code used for parallelizing the system for the SpiNNaker
architecture is event-driven. Whenever possible, we directly
adopt the algorithms described in [2].

A. Architecture

The data structures which represent the different compo-
nents of a HTM region are implemented as simple C structures
that are composed in a tree-like hierarchy. Operations on
HTM regions are implemented as functions that iterate over
the set of all columns and manipulate them as well as their
cells and dendrite segments individually. Many of them only
depend on the current state of the column that is modified
or on state variables of other columns from previous time
steps. Consequently, the different HTM operations can be
parallelized at the granularity level of single columns. The
layout of an instantiated HTM model on the SpiNNaker board
is depicted in Fig. 1: One region is allocated to one chip. The
data structures reside in the shared SDRAM of the respective
chip. This is the only memory on a SpiNNaker chip that
offers enough space and is accessible by all of the chip’s

Fig. 1. Mapping of the HTM model to a SpiNNaker chip. In this example,
the HTM region is comprised of eight columns (with eight cells each) that
are mapped to four of the chip’s cores (red boxes). In practice, all cores of a
chip are occupied by one region (e.g. 500 columns ↔ 17 cores).

Fig. 2. Simplified flowchart of the communication between the host and one
client during an HTM update cycle. The squares with diagonal lines indicate
synchronization barriers. In practice, parallelization is more fine-grained with
multiple barriers in each of the depicted phases. The barriers are realized with
a simple handshake protocol.

cores [7]. The possibility of designing the architecture such
that one region can be allocated and executed on multiple
chips was discarded in this initial study to avoid considerable
synchronization overhead.

B. Parallelization

As depicted in Fig. 1, each core is assigned an equally large
set of columns. One of the cores in a chip is chosen as the
host, the other cores become clients. All of the functions that
meet the conditions described earlier are executed in parallel
by every core. They manipulate only the columns assigned
to the corresponding core, alleviating the need for any locks
or semaphores since no data races can occur by design. All
other functions are executed by the host while the clients wait
for completion. The synchronization between the particular
phases of the spatial pooling and the temporal memory is
managed by the host. It signals the clients at the beginning of a
new phase and then, after having completed the computations
of that phase locally, also requests their completion status.
When all clients have confirmed completion, the host starts
the next phase by signalling all clients. A simplified schema
of this handshake protocol is depicted in Fig. 2. The cores
communicate via SDP messages. All messages are allocated
by the SpiNNaker API and each of them is assigned an ID to
convey the context of the message (i.e. the current phase in
the cycle). A message may also contain pointer addresses to
structures residing in the shared memory such as the pointer
to the region structure. Because of the unreliable nature of the
protocol [11], the clients are expected to confirm the reception
of every SDP packet. Otherwise the host assumes packet loss
and retries.

C. Optimizations

While a SpiNNaker system can be comprised of a huge
number of chips, every individual chip is rather limited in
terms of memory storage and processing power. To compensate
for these constraints, we introduced some minor modifications
to the original HTM model which are briefly outlined in the
following subsections.

1) Simplifications: Some of the details in [2] have been
changed or omitted to account for the special properties of
the SpiNNaker architecture. First, the inhibition step was
simplified. In [2], columns have an inhibition radius. This
means that a column will be activated by the spatial pooler
if it is contained in the set of the columns with the highest
overlap in its inhibition radius. To implement this, one would
need to compute this set for every column in the region in every
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inhibition step. Therefore the inhibition radius is omitted in our
implementation, which is equivalent to having a global inhibi-
tion radius that contains all columns. This simplification also
allows for a more efficient boosting mechanism. According
to the original specification, the average activity of a column
needs to be compared with the average activities of all other
columns inside its inhibition radius. Since the radius is now
global, it is sufficient to compute the maximum average activity
of all columns only once per cycle and then compare this
global maximum to a column’s average activity in order to
decide if boosting is required for that column.

To compute the accurate average activity of a column as
proposed in [2], it is required to store the activity of a column
over several time steps to determine the exact moving average.
Our implementation for SpiNNaker uses an approximation to
remove the need for keeping that much data. The new average
activity is computed from the value of the last time step and
the current activation state as follows:

ai+1 = ai − (ai − bi+1) /w (1)

ai is the average activity in the i-th cycle, bi is one if the
column is active in cycle i and otherwise zero. The variable
w is equivalent to the moving average window size. This
approximation comes, of course, at the cost of precision.

2) Garbage Collector: The temporal memory learns novel
patterns by creating new segments and connections. Since the
HTM is an online unsupervised machine learning system, it
should adapt to new and changing patterns and eventually
unlearn old patterns [2]. As the unlearning of patterns works
by negative reinforcement which leads to connections with
permanences of zero, old and unused connections accumulate
over time. This is essentially a memory leak that slows down
the system since the temporal memory contains functions
that iterate over all segments and connections. We addressed
this issue by adding a garbage collector (GC) to our im-
plementation. The GC works by checking the last cycle in
which a segment was active and by removing the segment
and all of its connections if the time stamp is old enough.
On a more fine-grained level, the GC also inspects single
connections and checks their timestamps. These connections
can also be removed as soon as the assigned permanence
value reaches zero. To make garbage collection possible, the
temporal memory updates timestamps every time a segment or
connection becomes active. The aggressiveness of the GC can
be regulated through a parameter. In general, the GC improves
performance and memory efficiency without impacting accu-
racy negatively. However, the properties of the input patterns
must be considered carefully when setting this parameter.
The longer and the more complex the pattern is, the longer
are the intervals between consecutive activations of certain
segments (connections). In such cases, a very aggressive GC
is detrimental to the accuracy of the HTM as it will remove
segments (connections) representing parts of a pattern that is
currently being learned by the HTM.

D. Classification

Every cycle of an HTM ends with a set of cells in the
predictive state, which is the output of the region [2]. This
is a problem because a region can predict several inputs at
once and the output set does not directly translate to one or

more expected input patterns. Reconstructing possible inputs
that match the prediction of the region is not a trivial task. In
contrast, it is quite easy to determine if or how much a given
input matched the region’s prediction by simply checking all
active columns and counting how many of them burst (i.e. did
not expect the input) versus how many of a column’s cells
predicted their activation (i.e. had their prediction confirmed).
A simple way to detect anomalies based on this idea is to
calculate the ratio of bursting columns to all active columns
after every cycle. If this ratio exceeds a threshold one can
declare the input received in this cycle an anomaly. This
solution proved to be sufficient for reliably detecting anomalies
in patterns of low complexity and length.

IV. EVALUATION

In order to evaluate the performance of our HTM im-
plementation, several tests that measure the accuracy of the
pattern recognition and anomaly detection were conducted
based on the following protocol: Every test case consisted of
five valid trials. Trials were considered invalid if the program
did not terminate successfully or if the average amount of
active columns did not reach a predefined threshold ranging
from 0.5% to 1%, depending on the test case. This threshold
was used because a region with very few active columns
produces very unreliable results. The threshold was set before
a test case was executed and consistently applied for every
trial in the test case. For every test case, measurements were
conducted until five valid trials were completed. In total, eight
test were conducted, each measuring performance under a
different combination of parameters and input properties.

A. Recorded Data

Four data points were collected for each test case: Pattern
recognition rate (true patterns), anomaly detection rate (true
anomalies), pattern failure rate (false anomalies) and anomaly
failure rate (false patterns). The calculations were done in the
following way:

ri =
(∑5

j=1 aij

)
/
(∑5

j=1 bij

)
(2)

ri is the pattern recognition rate in the i-th test case, aij is
the number of recognized patterns and bij is the number of
given patterns in the j-th trial of the i-th test case. All other
data points were calculated in the same manner. This method
of averaging over all trials of a test case was chosen since the
amount of given random input values (i.e. anomalies) could
differ quite strongly among the trials. The reason for this is
that in every time step a random number generator decided
with a fixed probability if a random input value should be
provided to the region instead of the next part of the pattern.

The pattern consisted of a string of integers, fixed in length,
repeated in a circular way until the trial terminated. The
integers ranged from 0 to 99. The probability of an anomaly
occurring at an individual cycle was 5%. Each trial had a
duration of 500 cycles, which means the region received 500
input values. Of those cycles, the first 100 were considered
the warm-up period in which no data points were collected.
Nevertheless, anomalies were also injected during the warm-up
period. The classification of an input value as either pattern or
anomaly was done by means of calculating the ratio of bursting
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Fig. 3. Pattern recognition rate and anomaly detection rate versus pattern
length. Test cases 1 – 4 used a region with 300 columns and 3 cells per
column, test cases 5 – 8 a region with 500 columns and 5 cells per column.

to active columns. If the ratio exceeded a set threshold for an
input value the input was classified as anomaly or as part of
the pattern, respectively.

B. Results

The first three test cases with 300 columns and 3 cells per
column show a steady decline of the pattern recognition rate
(PRR) as the pattern length increases. The exception to this is
the fourth test case, which shows an increase in performance
compared to the third test case. This is presumably an artifact
of the randomness of the HTM system and/or the low number
of trials per test case. Test cases five to eight with 500 columns
and 5 cells per column show a more sporadic behavior with
no recognizable trend in PRR as the pattern length increases.
Comparing test cases two to four and five to seven reveals that
increasing the amount of columns and cells per column does
not automatically improve PRR. In fact, the average PRR is
worse in the test cases with more columns and cells per column
but the same pattern length. All results are shown in Fig. 3.

In general, experimenting with the parameters of the HTM
has shown that the HTM’s behavior strongly depends on how
the parameters are set. The parameters are also interdependent
as the optimal values for a set of parameters could depend on
the values of other parameters. These properties render finding
the optimal parameter settings for a particular task a non-trivial
problem. A manual trial and error approach is generally prone
to getting stuck in a local optimum where changing some
values and then gradually adapting the other values could lead
to a better overall performance of the system.

V. CONCLUSION AND OUTLOOK

In this paper, we presented an implementation of the
HTM model for the SpiNNaker neuromorphic architecture.
While staying as close to the HTM specification as possible,
constraints imposed by the SpiNNaker platform required a few
minor modifications of the original algorithms. Nevertheless,
an initial evaluation clearly proved that our implemented model
is able to learn from input data to both predict future inputs
and to detect anomalies.

However, at the current stage of development, the produc-
tive use is still quite limited. Setting the model parameters
has to be done manually, which is not a viable solution

for larger HTM regions and more complex input data sets.
One possible solution could be the evolution of parameter
sets via a genetic algorithm. As recently reported in [12],
SpiNNaker can be used to speed up the learning process by
running multiple individuals in parallel. Another constraint
of the current implementation is the limitation of a region
to a single chip. HTM models of practically relevant sizes
will definitely need to span across several chips, which will
require more advanced mechanisms for synchronization and
data exchange within the system.

Adding the missing features described above will make the
HTM model directly available to robotic systems that already
have an interface to SpiNNaker. Moreover, we are considering
to replace a workstation which is currently running the HTM
model in a closed-loop setup with a biomimetic robot by a
SpiNNaker system with our neuromorphic implementation of
HTM.
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