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Abstract—The sensitivity of a recently proposed spike detector
exploiting the volatile properties of memristive device is opti-
mised. A 200 nm x 200 nm T iOx memristive device in volatile
region is biased with sub-threshold, unipolar and bipolar neural
events. The input neural signal is pre-processed using different
amplification settings. The resistive state response of the test
device in response to the input events is analysed and it is found
that inclusion of events in positive polarity leads to subsequent
increase in the number of false events when benchmarked against
state-of-the-art spike detector (template matching system). The
performance of the system is thereafter optimised by determining
optimum amplification settings and employing an offset such that
positive polarity events in the input signal are minimised.

Index Terms—Memristors, RRAM, integrating sensor, volatil-
ity, noise, template matching system

I. INTRODUCTION

Advances in neuroscience research and microelectronic de-
vices have led to substantial progress in neural processing mi-
crosystems bearing great potential for neuroprosthetic applica-
tions [1], [2]. Present date neural recording techniques [3] are
capable of recording electrophysiological activity from large
number of neurons in-vitro and in-vivo [4] leading to creation
of big neural data (Gb/s) [5]. Further advances in development
of neural interfaces is constrained by computational power
required to process ever increasing volume of neural signals
on-node in real-time [6], bandwidth [7] and scalability.

Recently, we proposed a new spike-detection approach
exploiting the volatile properties of emerging metal-oxide
resistive switching memory devices [8], commonly known
as ‘memristors’ [9]. When operated in volatile region, the
devices tend to undergo metastable memory state transitions
above an inherent threshold following which they inherently
relax to their initial resistive state (RS) region [10]. Using
nano devices, we demonstrated that the spiking events can be
encoded into transient RS changes of device-under-test (DUT)
reducing the power dissipated to less than 100 nW per channel
[8]. However, the study did not examine the effect of sub-
threshold events and operational parameters such as signal
amplification and offset on the response of memristive devices
in volatile region.
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Fig. 1. (a) Flow chart of electrical characterisation of memristive devices in
the volatile region and the spike-detection platform. (b) Neural recording used
for the experiment. (c) Resistive state evolution of the DUT in response to
the neural recording. The green band indicates the number of spikes detected
by the our platform.

In this work, we analyse the effects of sub-threshold,
unipolar and bipolar neural events on a TiOx nano memristive
device. The spike-detection performance of the devices is
estimated and benchmarked against established state-of-the-art
template matching system (TMS) [11]. Important observations
are made and the operational parameters are then optimised
to demonstrate enhanced sensitivity of the devices to biased
spiking events.

II. SYSTEM IMPLEMENTATION

A. Devices, Hardware Infrastructure and Electrical Charac-
terisation of volatile memristive devices

Figure. 1a illustrates the methodology and sequence in
which the experiments were carried out. For these experi-
ments, solid-state 200 nm x200 nm nano devices with stack
structure of Ti/Pt/TiOx/TiN were employed [12]. The elec-
trical characterisation was carried out using custom made in-
house fabricated hardware capable of addressing up to 32
devices in stand-alone configuration. In this work devices
were accessed directly on-wafer via a probe card [13]. The



electrical characterisation of devices was carried out in two
stages: (a) the pristine devices were electroformed using pulses
of positive polarity in the range of +4 V - +6 V [8] and (b) the
devices are biased with volatility characterisation algorithm to
determine the safe volatile region of operation of devices (i.e.
up to approximately -4 V) [14]. Notably, the devices in volatile
region operate in resistive state range of 300 kΩ - 3MΩ and
the inherent threshold (Vth−) of the devices are in the range
of ≈ -0.5 V - -2.5 V [8].

B. Extracellular neural recordings

The neural recording used in this work was recorded from
slices of dissected mid-peripheral rabbit ganglion cells using
an external Multi Transistor Array (MEA) based Complemen-
tary Metal-Oxide Semiconductor (CMOS) front-end system
[15]. The output neural recordings are voltage-time signals in
the range of ± 0.5 V recorded at a sampling rate of 12.2 kHz.
Each neural recording in this work contains ≈ 63 k samples
lasting for ≈ 5.2 s (as shown in Fig. 1b) [16].

C. Spike-detection platform and signal processing

In the spike-detection platform, the extracellular recordings
are pre-processed and suitably amplified using a gain (G)
and offset (Voff ) stage. Next, the DUT is biased with the
processed neural recording using the hardware infrastructure
and the RS transitions of the device are recorded periodically.
The compressed RS readings are thereafter post-processed
to distinguish significant RS changes from the insignificant
ones. Figure 1b,c illustrates an example of the volatile RS
response of the DUT in response to the biased neural recording
amplified using a G and Voff value. The initial RS of the DUT
is ≈ 4 MΩ. With respect to supra-threshold event the device
exhibits a metastable transition to a low RS of ≈ 3.2 MΩ
following which the devices spontaneously relaxes back.

Importantly, in this work we follow a standard schematic
and the neural signal is fed to the DUT in batches of 1000
data points [16]. Per batch five RS measurements are recorded
(Compression rate = 1000/5 = 200). In every batch the RS
of the DUT is recorded in the beginning of each batch and
then after every 300 data points giving four consecutive RS
measurements (i.e. four bins). Thereafter one reading is taken
at the end of each batch and the beginning of next batch
with no neural data point in between (i.e one bin). The
former RS measurements are used for estimation of normalised
RS changes in each bin (∆R/R0) and the latter gives the
estimation of noise in the system. Collection of the noise
measurements make a noise band. RS change in each bin
(∆R/R0) is assigned to the highest voltage magnitude in each
bin. For the noise band limits, since the DUT relaxes in
positive polarity, all the noise measurements in this polarity are
discarded and only measurements in negative polarity are used
[8]. The significant RS changes in comparison to the noise
band gives an estimation of the number of spikes detected.
All the RS changes outside the noise band are estimated as
detected spikes.

The number of spikes detected are benchmarked against
state-of-the-art TMS. For the purpose of quantification and

Fig. 2. Analysing the effect of events on nano volatile memristive device.
(a), (b) (c) (Upper panel’s) Biasing a device-under-test (DUT) with unipolar,
bipolar and noise events, pre-processed using different settings. (a), (b), (c)
(Lower panel’s) Response of the DUT in response to the biased events. The
grey bands indicates the spikes detected by our platform. The green bands
indicates few instances of spikes detected due to positive polarity events.

TABLE I
COMPARISON OF QUANTIFICATION PARAMETERS FOR THE UNIPOLAR AND

BIPOLAR EVENTS IN 2A AND B. VMS: SPIKES DETECTED BY OUR
PLATFORM, TMS: SPIKES DETECTED BY TEMPLATE MATCHING SYSTEM,
TRUE POSITIVES (TP), FALSE POSITIVES (FP), TRUE NEGATIVES (TN)

AND FALSE NEGATIVES (FN)

Max/Min
(V) VMS TMS TP FP TN FN RTP

(%)
RFP
(%)

1. 0/-3 37 78 35 2 173 43 44.8 1.14
2. +0.5/-3 57 78 46 11 164 32 58.9 6.28

understanding the efficiency of the neural detector, the rate of
TP (RTP) and FP (RFP) are calculated [17].

III. RESULTS AND DISCUSSION

A. Effects of unipolar and bipolar neural events

For this experiment raw neural recording i.e. prior to pre-
processing was modified. To generate events in one polarity
as shown in Fig. 2a, the threshold was set to -0.5 V and all
the events above were discarded to study only the effects of
spiking events in one polarity. The remaining events were
then amplified to [0, -3 V] range. Similarly for Fig. 2b, two
threshold’s were set at +0.3 V and -0.5 V and the remaining
events above and below respectively were amplified to [+0.5 V,
-3 V] range to the study the relation of spiking events in one
polarity to events in different polarity. The RS transitions of a
DUT in response to the pre-processed signals are illustrated in
Fig. 2a and b respectively. The grey band are spikes detected
by our platform.



Fig. 3. Comparison of noise band diagrams i.e. ∆R/R0 vs voltage plots for
sub-threshold events. The blue and red colour illustrates the response of the
DUT in response to the neural events in Fig. 2c when mapped to approximately
± 0.2 V and ± 0.5 V respectively.

The effect of positive polarity events for instance at ≈ 0.3 s,
1.6 s and 2.4 s as illustrated by green bands in Fig. 2b can be
noted. The quantification parameters are presented in Table. I
and it can be noted that the inclusion of positive polarity events
increases the RTP from 44.8% to 58.9%. However, the RFP
correspondingly increases from 1.14% to 6.28%. Moreover, in
our platform the RS change within a bin (300 data points) is
attributed to the strongest pulse, therefore at number of bipolar
instances such as 0.4 s, 1.5 s, 2 s, 3.4 s, 4.4 s etc the change in
RS is assigned to negative polarity events.

B. Effect of sub-threshold events

The Vth− of the employed devices are in the range of
≈ 0.5 V to 2.5 V. To understand the effect of sub-threshold
events on the volatile behavior of the devices, the following
experiment was carried out. Similarly to Fig. 2a, two thresh-
olds were set to +0.3 V and -0.5 V and the activity within
was amplified to [+0.2, -0.2] V range deliberately excluding
the spikes, as shown in Fig. 2c. Notably, a drift in the RS
of the DUT from ≈ 2.8 Ω to ≈ 3.2 MΩ in response to the
sub-thresholds can be noted.

For better understanding, the normalised changes in the RS
of the DUT in each bin (∆R/R0) is plotted as a function of
the highest voltage magnitude in each bin (as shown in blue
colour, Fig. 3). The noise measurements are illustrated on x=0,
the measurements in positive polarity are discarded and the
noise band limit is set using 2σ method using negative noise
measurements (optimised for our system) 1. The noise band
limit is estimated to be -3.73%. It can be observed that all
RS changes at ≈ ±0.2 V fall within the estimated noise band
limits. Since, we account for normalised changes in RS in each
bin, slight drift in the RS of the DUT is naturally filtered off
and therefore these voltages doesn’t affect the output of the
proposed neural detector.

However, on amplifying the neural events in Fig. 2c to
± 0.5 V, ∆R/R0 vs V plot in red colour in Fig. 3 is obtained.
The noise band limit is estimated to be -3.26 % and the RS
changes in black circle at + 0.5 V fall outside the noise band

1It should be noted that resistive state changes in positive polarity are
discarded. Since, the devices relaxes back in positive polarity following a
resistive state transition, inclusion of noise events in positive polarity doesn’t
indicate fair estimation of the noise band limits.

thus registered as spikes confirming the effect of positive
polarity events. Following these observations positive polarity
events were modulated using an optimum offset value such that
strength of events in positive polarity were minimised, which
also justifies the importance of this key operational parameter.

C. Optimum settings for volatile devices

Considering the observations made in Fig. 2 and Fig. 3, the
operational parameters for pre-processing the neural signal
were reconsidered and optimised. The same neural recording
(as shown in Fig. 1b) was amplified using different gain values
whilst the offset value was kept constant. Figure. 4 a, b and c
illustrates the (∆R/R0) vs V plots for the response of a DUT
when biased with same neural recording with G value set as
2.6, 3.2 and 3.6 respectively. The offset was kept constant
at -0.6 V. The number of spikes detected by our platform
was benchmarked against the TMS and the quantification
parameters are demonstrated in Table. II

Visually in Fig. 4a,b and c, the grey area indicates the noise
measurements that have been discarded. The horizontal blue,
red and green bar indicates the noise band with black dashed
line indicating the noise band limit. Everything outside the
noise band in the negative quadrant indicates the number of
detected spikes. This can be also seen in histogram plots
presented in Fig. 4c, d and e, where the yellow bands indicate
the spikes detected by our system. It was observed that as
the gain was increased from 2.6 to 3.2, the rate of TP almost
doubled i.e from 29.48% to 60.25%. At the same time the
corresponding increase in the rate of FP was from 2.8% to
5.14% (see Table. II). More clearly, on comparing Fig. 4 a,b
the pink quadrants in the latter indicates a significant increase
in the detected spikes thus indicating the positive effects of
increase in gain. The noise band limit in both the cases is ≈
-4.5%. Similar observations were made for G = 2.8, where the
rate of TP was found to be 38.48 %.

Interestingly, as the gain was further increased from 3.2 to
3.6, the rate of TP remained approximately the same, however,
the rate of FP almost doubled to 9.71% where the noise
band limit was estimated to be -4.2% (see Table. II). Gain
(3.6) and Voff (-0.6 V) for this DUT in essence illustrates the
optimum point of operation. This can be generalised to an
understanding where most significant supra-threshold events
are above the inherent threshold of the device and insignificant
events/noise are below the threshold. An increase in gain
beyond an optimum point leads to inclusion of insignificant
amplified noise events above the threshold of the DUT and
thus effects the sensitivity of the neural detector by increasing
the FP.

D. Discussion

The presented optimised and quantified results are from de-
vices in nano dimensions (200 nm x 200 nm). We obtain much
higher rate of TP and FP routinely with higher dimension
devices of 60µm x 60µm (≈ ≥ 75%) [8]. Exploring and engi-
neering other stack configurations may be other possible route
for optimising the performance of the devices. Importantly,
the number of spikes detected are benchmarked assuming



Fig. 4. A single DUT was biased with the neural recording in Fig. 1b. (a), (b), (c) The plots for (∆R/R0) with respect to highest voltage magnitude in each
bin for gain equal to 2.6, 3.2 and 3.6 respectively. The offset was kept constant at -0.6 V. (d), (e), (f) Corresponding histograms for (∆R/R0) for the three
cases respectively. The yellow bands indicate the number of spikes detected. Vth− indicates the inherent threshold voltage of the DUT (≈ -1.2 V).

TABLE II
COMPARISON OF DIFFERENT GAINS WITH CONSTANT OFFSET VALUES FOR A SINGLE NEURAL RECORDING

Gain Offset VMS TMS TP FP TN FN Rate of
TP (%)

Rate of
FP (%)

Noise
Max (%)

Noise
Min(%)

Noise band
limit (%)

1. 2.6 -0.6 28 78 23 5 170 55 29.48 2.8 +7.52 -3.15 -4.48
3. 3.2 -0.6 56 78 47 9 166 31 60.25 5.14 +23.51 -2.99 -4.57
4. 3.6 -0.6 63 78 46 17 158 32 58.9 9.71 +21.15 -3.18 -4.196

the template matching system to be a perfect spike-detector
but in reality this is not the case [16]. In future, we further
plan to confirm the performance of the devices with respect
to artificial simulated data where the ground truth is already
known. Finally, there may be other ways of setting the noise
band limits such as noise max and noise min (also indicated in
Table. II), however, the chosen 2σ method has been optimised
for our devices and system.

IV. CONCLUSION

We have shown the capability of TiOx solid-state devices
to encode spiking events in the metastable resistive state
transitions. The volatility property of memristive devices offers
advantages in terms of reduced power dissipation i.e. sub 100
nW by operating the devices in a very high resistive state
region and also offers huge potential for scalability. We pre-
sented experimental results from 200 nm x 200 nm nano TiOx

memristive devices. The effects of sub-threshold, bipolar and
unipolar neural events on the volatile behavior of the device are
studied. By mitigating the noise effects and setting an optimum
point of key operational parameters, the performance of the
neural detector is enhanced.
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