Performance Comparison of Time-Step-Driven versus Event-Driven
Neural State Update Approaches in SpiNNaker

Amirreza Yousefzadeh', Mikel Soto!, Teresa Serrano-Gotarredona!,

Francesco Galluppi®

, Luis Plana?, Steve Furber?,

and Bernabe Linares-Barranco!

Unstituto de Microelectronica de Sevilla (CSIC and Univ. de Sevilla), Sevilla, Spain Email: bernabe @imse-cnm.csic.es
2Dept. Comp. Science, University of Manchester, UK

Abstract—The SpiNNaker chip is a multi-core processor opti-
mized for neuromorphic applications. Many SpiNNaker chips are
assembled to make a highly parallel million core platform. This
system can be used for simulation of a large number of neurons in
real-time. SpiNNaker is using a general purpose ARM processor
that gives a high amount of flexibility to implement different
methods for processing spikes. Various libraries and packages are
provided to translate a high-level description of Spiking Neural
Networks (SNN) to low-level machine language that can be used
in the ARM processors. In this paper, we introduce and compare
three different methods to implement this intermediate layer of
abstraction. We have examined the advantages of each method
by various criteria, which can be useful for professional users to
choose between them. All the codes that are used in this paper
are available for academic propose.

I. INTRODUCTION

The SpiNNaker platform is a digital multi-core and multi-
chip neuromorphic hardware optimized for spike communica-
tion and massively parallel computation [1].

Each SpiNNaker chip is composed of 18 ARM968 cores,
each with 32kB of instruction memory and 64kB of data
memory!. A 128MB SDRAM is shared between the cores
[2]. Each chip can be connected to other chips using the 2-of-
7 non-return-to-zero protocol [3] and has 16 available cores
for user’. Fig. 1 shows the layout of the SpiNNaker chip.

For this work, we have used two different boards, one with
4 SpiNNaker chips (SPIN-3) and the other with 48 SpiNNaker
chips (SPIN-5) as shown in Fig. 2.

The SpiNNaker software sits on top of this hardware to
allow a smooth design and simulation of different neural net-
work configurations. Each SpiNNaker chip runs an application
programming interface (API) on top of a specific event-based
kernel. The host machine runs a Python package (PyNN) for
the specification of the neural network structures.

Using PyNN description language [4], the user can specify
different neural network topologies and parameters such as
populations, synapses, projections and neuron models. Finally,
another specific tool maps the PyNN neural network descrip-
tion to the SpiNNaker resources generating and downloading
binary files for real-time simulation of the neural network.

In hardware, a population of neurons is assigned to each
ARM core. The states of these neurons are stored in the local

'In this paper we used the first commercial version of SpiNNaker chip.
A Newer version of SpiNNaker chip is under development at the time of this
paper

2From 18 cores, one is used for management and another one is reserved.

llllllll llillliliiillllllll HERRERRREE]

Fig. 1 SpiNNaker chip layout [1]. It contams 18 ARM
processors, a Router and SDRAM controller.

SRS RRRRRARLS

(b)
Fig. 2: (a) 4 chip SpiNNaker board [SPIN-3], (b) 48 chip
SpiNNaker board [SPIN-5]

data memory and can be updated with different events. ARM
cores communicate with each other through a packet switch
network on chip. Each packet carries the source address that
contains the neuron’s ID, core ID, and chip ID. Each chip
includes a router that communicates to all the cores and exter-
nal links. The routing tables of the routers are programmed to
establish the predefined neural connections. Additionally, the
SDRAM memory in each chip can be used to store synaptic
weights and allow each neuron to be connected to a few
thousand synapses. Several alternative methods to implement



Neuron (PN)

output spike and resetstate

Symmetric neuron (NN)

output spike and reset state
7

Fig. 3: Behavior of the neuron that acts as positive neuron
(PN) and negative neuron (NN)

Spiking Neural Networks (SNN) in SpiNNaker (besides the
standard PyNN based approach) have been reported to process
spikes and store neuron states and synaptic weights [5], [6],
[7]. In this work, we present three different methods to map
an SNN on SpiNNaker and compare their performances. All
methods use the same neuron model, which is not directly
supported in the standard PyNN based approach.

The neuron model used is entirely event-driven. The state
of the neuron evolves with time. In our work, we have used
signed event-driven spiking neurons, as described in [8]. This
neuron is a Leaky Integrated and Fire neuron with two thresh-
olds. When a neuron membrane exceeds the positive threshold,
it will generate a positive spike, and when it exceeds a negative
threshold, a negative spike will be created. Moreover, leakage
in this neuron is linear.

For this work, a previously reported poker card symbol
recognition Convolutional Spiking Neural Network (ConvNet)
is used as benchmark [8]. This network is composed of 4
convolutional layers interleaved with two subsampling stages.
Input spikes come from Dynamic Vision Sensor [9]. Section 2
describes the different implementations. Section 3 shows the
experimental setup and results obtained from each implemen-
tation. Finally, Section 4 summarizes the peculiarities of each
implementation.

II. ALTERNATIVE BENCHMARK IMPLEMENTATIONS ON
SPINNAKER

A. Time-Step-Driven Implementation (based on the Standard
SpiNNaker Approach)

This implementation was done using the available SpiN-
Naker software version. A new neuron model compatible with
the standard models was created to implement the poker card
ConvNet. In standard SpiNNaker software, each neuron will
be updated at a regular time step that is 1ms by default.

Our event-driven neuron fires positive and negative spikes,
however, the SpiNNaker software does not support negative
spikes. Therefore, we have created a new sub-neuron model
PN that has two voltage thresholds with the same value
but inverse sign. This sub-neuron fires and resets when the
membrane voltage exceeds the positive threshold, and it resets
without firing when the membrane voltage goes below the
negative threshold, as shown in Fig. 3. If we now create a
symmetric sub-neuron NN that behaves inversely and combine
both {PN, NN}, we get the positive and negative spikes.

The connection between a pre-layer neuron and a post-layer
neuron is shown in Fig. 4. The connecting weight w can, in

Positive spike

Negalive spike

Fig. 4: Pre-layer post-layer connection scheme. e(w) is exci-
tatory target and i(w) is inhibitory target

principle, be positive or negative. If positive, an excitatory
synapse e(w) is used and if negative, an inhibitory synapse
i(-w) is used. Positive spikes from pre sub-neuron PN are
connected to post sub-neuron PN using {e(w),i(-w)}, but the
effect is sign-reversed when connecting to post sub-neuron NN
{e(-w),i(w)}. The connections from pre NN to the two post
sub-neurons are symmetrically reversed.

The ConvNet architecture to perform recognition of the card
symbols of [8] with this implementation needs 14332 neurons
and 130 cores (9 SpiNNaker chips) using 100 neurons per
core.

B. Spike-Driven Implementation

In the original SpiNNaker software, there is a millisecond
time step and each neuron will be updated every millisecond.
There are two significant disadvantages for this millisecond
time step. First, temporal precision will be limited to the
time step that is 1ms by default. Second, even without any
incoming activity, neurons are continuously updated every
time step. If more timing resolution or fully event-driven
power consumption is desired, one may prefer a neuron that
updates only after receiving a spike. It is believed that most
of the information of spikes are at the time of firing [10] and
losing timing accuracy may have a significant effect on some
SNN implementations.

In this implementation, the original SpiNNaker software
has been modified to include the neuron model that generates
positive and negative spikes. SpiNNaker uses AER packets
[11] for spike communication. To add polarity to spikes,
we needed to modify the structure of the AER packets.
Additionally, we removed the time step neuron update. In
this case, neurons will be updated immediately after receiving
spikes.

When a spike enters to a processor, first it will load the
proper synaptic weight from SDRAM memory, then it will
immediately update the neuron potential. If the spike has
the positive polarity, the membrane potential of the neuron
is increased by the synaptic weight value. Conversely, if the
spike has a negative polarity, the membrane potential will be
decreased by the synaptic weight value.

In this implementation there is no time step for every mil-
lisecond, so every neuron should keep track of their last time
of receiving spike (for calculating leakage) and the last time
of generating a spike (for calculating the refractory period).



After the update of the membrane potential of the neuron, if
it exceeds the positive threshold, a positive post-synaptic spike
will be generated, and if it overcomes the negative threshold,
a negative post-synaptic spike will be generated.

All the above processes in each core of SpiNNaker chips
will be done immediately after a spike enters and it takes
around 10us in average. So each core in this implementation
can handle around 100k synaptic updates per second indepen-
dent of how many neurons are inside this core. For this poker
card implementation, we used 104 ARM cores in SpiNNaker
hardware.

C. Convnet Optimized Implementation

The main difference of this ConvNet implementation is
that it takes advantage of the weight sharing property of the
ConvNets. This weight sharing property highly reduces the
number of synaptic weights that must be stored for a neuronal
population.

In this implementation, the original SpiNNaker software has
been modified to admit a particular “convolution connector”
[7]. This “convolution connector” stores in the local data
memory of the chip the kernel weights of the corresponding
population. Each feature map shares a “convolution connector”
for every neuron in it. The implementation is entirely event-
driven because each event is processed at the time it arrives.
When an event reaches to the convolution module, the corre-
sponding kernel is applied to update the neuron state and the
neighbor pixels. Because the weights are stored in the local
data memory, there is no need to read the synaptic weights
from the SDRAM.

Furthermore, we distinguish between the shared parameters
of the neurons in a population like voltage threshold, leakage
rate, refractory time and so on and non-shared parameters
like each neuron state and firing times. The shared neuron
parameters are stored once per population in the local memory.
In the original SpiNNaker software, each neuron parameters
are stored in the data memory. Storing the parameters in the
local memory provides a high-speed access, but the capacity
of this local memory can limit the number of neurons that
can be implemented per core. Specifically, we are able to
implement 2048 convolution neurons per core, where this
number is determined by the maximum number of addressable
neurons by the implemented routing scheme. This method uses
22 ARM cores for the poker card recognition benchmark. This
method was the only one that could fit into the SPIN-3 board
with 4 SpiNNaker chips.

III. EXPERIMENTAL SETUP AND RESULTS

The POKER-DVS Database [12] is recorded by shuffling
poker cards in front of the DVS. This dataset has high event
rate. Processing events and recognizing symbols in real-time is
a challenging task. In previous work [8] a convolutional spik-
ing neural network to process poker card symbols is introduced
and implemented in a software simulator. In this work, we
have implemented this network in PyNN [4] and mapped it to
SpiNNaker using the previous three implementation methods.

Spi@

V"'

Fig. 5: Experimental setup. Events flew from Data-Player [11]
to AER-NODE board [13] to SPIN-5 board. The processed
events come back from the SPIN-5 board to AER-NODE
board and they go to USB-AER [11] board to be sent to the
computer.

When we send the spikes in real-time (high event rate)
to SpiNNaker, the cores sometimes cannot handle all the
spikes with the same speed as they arrive. In this case, the
old spikes will be dropped which may decrease the accuracy
of the network. A different implementation of the Spiking
Neural Network in SpiNNaker can have different processing
efficiency and throughput. We measured and compared the
accuracy of the previously mentioned methods when present-
ing the POKER-DVS Database in real-time and with different
slowed-down factors to the SpiNNaker boards.

Fig. 5 shows one of our experimental setups for real-time
experiments with SpiNNaker. We loaded the POKER-DVS
events sequence in a data player board [11]. The data player
board stores the addresses and timestamps of the recorded
events in a local memory and reproduces the events through
a parallel AER link in real time.

The AER-Node board [13] contains a Spartan-6 FPGA and
two parallel AER ports. This board receives AER events from
the Data-Player and puts them on a fast serial link [14] to
be sent to the SPIN-5 board. The processed spikes will be
sent back to the AER-Node board on the same fast serial link.
Finally, the AER-Node board sends the output spikes to the
USB-AER board [11] to be sent to the computer through a
USB port.

The classification is considered successful when the number
of output events for the correct category is higher than for
the other categories. We repeated the experiment for different
slowed-down factors of the events of the input stimulus
sequence. Also, we applied the same slowed-down factor to
the network timing parameters for a correct time scaling.
Fig. 6 shows the average recognition success rates obtained
for different slowed-down factors. A ‘1’ slowed-down factor
means real-time operation.

As it can be seen, when the slowed-down rate is very
high, all the implementations will show almost similar per-
formance, which is close to what is observed when using
the software simulator [8]. When spike presentation is closer
to real-time, the time-step-driven implementation shows bet-
ter performance. This result shows that the time-step-driven



100 T T T T

90 -

80+

70l —ConvNet implementation

60| —Spike-Driven Implementation

Time-step driven implementation
50 -

40 -

Recognition Accuracy (%)

30+

L L L

0 20 40 60 80 100
Slow rate

Fig. 6: Accuracy of symbol recognition versus slow rate of
POKER-DVS events from real-time

implementation needs the minimum amount of processing
(neuron updates) when the event rate is very high. The spike-
driven implementation shows the worst results for high event
rates because it needs the maximum processing time per spike
among all the methods. Beside processing efficiency, other
factors should be considered. For example, while the time-
step-driven implementation occupied 130 ARM cores, the
ConvNet implementation only needed 22 cores. Additionally,
spike timing resolution in the spike-driven implementation is
10us while it is 1ms for the time-step-driven implementation.
It is important to mention that the neural network parameters
were obtained by mapping from a frame-based training method
[8]. Therefore, the network accuracy could be more sensitive
to the rate of spikes than the time of spikes.

IV. CONCLUSIONS

In this work, we have compared three different neural
network implementations using the SpiNNaker platform. The
first implementation is time-step-driven processing which is
the standard method for the SpiNNaker software. We have
shown that this method has the highest recognition perfor-
mance and experiences less spike congestion and therefore
less event dropping. For the second method, spike-driven im-
plementation, we removed the time step constraint and spikes
are processed immediately. We have shown that this method
has a high timing resolution in comparison to the time-step-
driven method while it needs more processing time per spike.
Finally, for the ConvNet optimized implementation, the spikes
are processed immediately and the synaptic weights can be
stored in the local data memory of the ARM processors rather
than in SDRAM. This method has very high timing resolution
and good processing performance. When the input event rate
is high, this method showed worse performance than the time-
step-driven but a better performance than the spike-driven
implementation. Also, this method is limited to convolutional
connections and cannot be used for fully connected networks.

ACKNOWLEDGEMENTS

This work was supported in part by the EU H2020 grants
644096 ECOMODE and 687299 NEURAM3, and by the
Spanish grant from the Ministry of Economy and Competi-
tivity TEC2015-63884-C2-1-P (COGNET) (with support from
the European Regional Development Fund).

REFERENCES

[1] S. B. Furber, et al., Overview of the spinnaker system architecture, IEEE
Transactions on Computers 62 (12) (2013) 2454-2467.

[2] E. Painkras, et al., SpiNNaker : A 1-W 18-Core System-on-Chip for
Massively-Parallel Neural Network Simulation 48 (8) (2013) 1943—
1953.

[3] L. A. Plana, et al., An on-chip and inter-chip communications network
for the spinnaker massively-parallel neural net simulator, in: Second
ACM/IEEE International Symposium on Networks-on-Chip (nocs 2008),
2008, pp. 215-216.

[4] A. Davison, et al., Pynn: a common interface for neuronal network
simulators, Frontiers in Neuroinformatics 2 (2009) 11.

[5] X. Lagorce, et al., Breaking the millisecond barrier on spinnaker: im-
plementing asynchronous event-based plastic models with microsecond
resolution, Frontiers in Neuroscience 9 (2015) 206.

[6] G. Orchard, et al., Real-time event-driven spiking neural network object
recognition on the spinnaker platform, in: 2015 IEEE International
Symposium on Circuits and Systems (ISCAS), 2015, pp. 2413-2416.

[71 T. Serrano-Gotarredona, et al., ConvNets experiments on SpiNNaker,
Proceedings - IEEE International Symposium on Circuits and Systems
2015-July (2015) 2405-2408.

[8] J. A. Perez-Carrasco, et al., Mapping from frame-driven to frame-free
event-driven vision systems by low-rate rate coding and coincidence
processing—application to feedforward convnets 35 (11) (2013) 2706—
2719.

[9] T. Serrano-Gotarredona, B. Linares-Barranco, A 128 x 128 1.5%
contrast sensitivity 0.9% FPN 3us latency 4 mw asynchronous frame-
free dynamic vision sensor using transimpedance preamplifiers, IEEE
Journal of Solid-State Circuits 48 (3) (2013) 827-838.

[10] T. Masquelier, et al., Microsaccades enable efficient synchrony-based
coding in the retina: a simulation study, Scientific Reports 6.

[11] R. Serrano-Gotarredona, et al., Caviar: A 45k neuron, Sm synapse, 12g
connects/s aer hardware sensory-processing-learning-actuating system
for high-speed visual object recognition and tracking, IEEE Transactions
on Neural Networks 20 (9) (2009) 1417-1438.

[12] T. Serrano-Gotarredona, B. Linares-Barranco, Poker-dvs and mnist-dvs.
their history, how they were made, and other details, Frontiers in
Neuroscience.

[13] T. Iakymchuk, et al., An aer handshake-less modular infrastructure
pcb with x8 2.5gbps lvds serial links, in: 2014 IEEE International
Symposium on Circuits and Systems (ISCAS), 2014, pp. 1556-1559.

[14] A. Yousefzadeh, et al., On multiple aer handshaking channels over high-
speed bit-serial bidirectional lvds links with flow-control and clock-
correction on commercial fpgas for scalable neuromorphic systems,
IEEE Transactions on Biomedical Circuits and Systems 11 (5) (2017)
1133-1147.

[15] A. Yousefzadeh, Real time demo, poker kard symbol detection, https:
/lyoutu.be/zkwezv7FknE (2015).


https://www.researchgate.net/publication/323113712

