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Abstract—Deep convolutional neural networks (CNNs) have 
become one of the state-of-the-art methods for image 
classification in various domains. For biomedical image 
classification where the number of training images is generally 
limited, transfer learning using CNNs is often applied. Such 
technique extracts generic image features from nature image 
datasets and these features can be directly adopted for feature 
extraction in smaller datasets. In this paper, we propose a novel 
deep neural network architecture based on transfer learning for 
microscopic image classification. In our proposed network, we 
concatenate the features extracted from three pretrained deep 
CNNs. The concatenated features are then used to train two 
fully-connected layers to perform classification. In the 
experiments on both the 2D-Hela and the PAP-smear datasets, 
our proposed network architecture produces significant 
performance gains comparing to the neural network structure 
that uses only features extracted from each single CNN and 
several traditional classification methods.  
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I. INTRODUCTION  

Microscopic image analysis has become one of the most 
important fields in biomedical research as it helps scientists to 
understand organisms of several biological phenomena at a 
cellular or subcellular level. Applications of microscopic 
images range from diagnosing patient conditions to studying 
complex processes of cells. Among microscopic image 
analysis tasks, classification of images is of great significance. 
Various applications related to microscopic image 
classification have been developed. For example, 
classification of PAP-smear images [1] is performed for 
diagnosing cancers and classification of 2D-Hela images [2] is 
carried out for investigating subcellular structures of 
endogenous proteins. Since manual microscopic image 
classification is time-consuming and high-cost, several 
automatic methods have been proposed. The traditional 
automatic classification methods share the same pipeline using 
hand-crafted features: a features extractor (such as Local 
Binary Pattern (LBP) [3], Zernike moment [4], Gabor [5] or 
combinations of them [6]) is used jointly with a classifier 
(support vector machines [7] or artificial neural network 
[4][8]). These methods have achieved reasonably good 
classification results but the accuracy could still be further 
improved. 

With the advance of computational capability of hardware 
and the availability of large labelled image datasets, deep 
convolutional neural networks (CNNs) have become one of 
the state-of-the-art methods for image classification in various 
domains. Such deep CNN structures [9][10][11][12] perform 
well on large datasets such as ImageNet. However, deep 
CNNs may suffer from serious overfitting on biomedical 
image datasets, which generally have only hundreds or 
thousands of images [13]. 

 
One promising approach to exploiting deep neural networks 

on small datasets is transfer learning. In transfer learning, the 
deep network structure is trained on a large nature image 
dataset before being used as a feature extractor on a small 
dataset. The extracted features from pretrained deep CNNs are 
generic and applicable to other datasets [14][15]. Recently, 
several approaches based on transfer learning for biomedical 
image classification have been proposed, such as combining 
extracted features from deep CNNs with hand-crafted features 
[16][17], fine-tuning deep CNNs without further network 
structure adjustment [18], ensembling the outputs generated 
by various CNNs [19]. These approaches are either 
computationally complicated for biomedical applications 
[16][17][19] or do not consider jointly applying features 
extracted from various CNNs [18]. 

 
In this paper, we use three different deep CNNs, namely 

Inception-v3 [9], Resnet152 [11], Inception-Resnet-v2 [12]. 
These CNNs are pretrained on ImageNet [20]. In [21], the 
features from various CNN layers are combined to incorporate 
both low and high-level information. Also, in [22], CNN 
features from images of multiple resolutions are used. 
Motivated by the success of exploiting multiple features for 
classification in [21][22], we propose to concatenate the 
features from these pretrained networks. The classification 
part of our network is inspired by [18][23], where the softmax 
layer is used as the classifier.  We modify the classifier by 
adding one hidden layer for better learning capability.  
 

The contributions in this research are summarized as 
follows: i) The use of transfer learning on small microscopic 
datasets; ii) The concatenation of features extracted from 
different networks to improve classification accuracy; iii) The 
proposal of the last two fully-connected layers to adapt the 



generic features extracted from the pretrained CNNs to 
biomedical data. Our experiments on two microscopic images 
datasets, namely PAP-smear and 2D-Hela show significant 
accuracy improvements comparing to several traditional 
classification methods. Specifically, the proposed method 
achieves classification accuracy of 92.57% on 2D-Hela dataset 
and 92.63% on PAP-smear dataset. Compared with the best 
method available to us, the proposed method achieves the 
accuracy gains of 3.20% on 2D-Hela and 2.67% on PAP-
smear, respectively. 

 

II. PROPOSED METHOD  

In this paper, we introduce a novel deep neural network 
architecture for microscopic image classification using 
transfer learning. In the feature extraction layers of the 
proposed architecture, three state-of-the-art CNNs are used 
and their extracted features are concatenated. The 
concatenated feature is fed into two fully-connected layers to 
generate classification outputs.  

A. Pretrained CNNs for feature extraction 

In this section, we adopt three deep CNN architectures, 
namely Inception-v3, Resnet152 and Inception-Resnet-v2 as 
the feature extractors of the proposed method for microscopic 
image classification tasks. These CNNs are pretrained on a 
nature image dataset (ImageNet) for distinct generic image 
descriptors and they can be applied to extract discriminative 
features from biomedical images based on transfer learning 
theory [14]. The structure of each adopted CNN is briefly 
described as follows: 

a) Inception-v3 
     Inception-v3 [9] is an extended network of the popular 
GoogLeNet [10] which has achieved good classification 
performance in several biomedical applications using transfer 
learning [18][19]. Following GoogLeNet, Inception-v3 
proposed an inception model which concatenates multiple 
different sized convolutional filters into a new filter. Such 
design decreases the number of parameters to be trained and 
thereby reduces the computational complexity. The basic 
architecture of Inception-v3 is illustrated in Fig. 1. 

 

 
 

Fig. 1. The basic architecture of Inception-v3. 

b) Resnet152 

Residual networks (Resnet) [11] were proposed as a family of 
multiple deep neural networks with similar structures but 
different depths. Resnet introduces a structure called residual 
learning unit to alleviate the degradation of deep neural 
networks. This unit’s structure is a feedforward network with 
a shortcut connection which adds new inputs into the network 
and generates new outputs. The main merit of this unit is that 
it produces better classification accuracy without increasing 
the complexity of the model. We select Resnet152 as it 
achieves the best accuracy among Resnet family members 
[11]. Fig. 2 illustrates the basic architecture of Resnet152. 
 

 
Fig. 2. The basic architecture of Resnet152 . 

c) Inception-Resnet-v2 
     Inception-Resnet-v2 [12] is formulated based on a 
combination of the Inception structure and the Residual 
connection. In the Inception-Resnet block [12], multiple sized 
convolutional filters are combined by residual connections. 
The usage of residual connections not only avoids the 
degradation problem caused by deep structures but also 
reduces the training time. Fig. 3 shows the basic network 
architecture of Inception-Resnet-v2.   

 

 
Fig. 3. The basic architecture of Inception-Resnet-v2. 

B. The proposed network structure 

     First, the three CNN models are trained over more than 1 
million natural images from 1000 categories in ImageNet [20]. 
As discussed in [19], after being trained on a very large 
labelled dataset (e.g., ImageNet), transfer learning technique 
can be adopted, i.e., these deep CNNs are capable to learn 
generic image features that are applicable to other image 
datasets without training from scratch. Fig. 4 illustrates the 
transfer learning structure for a single CNN. In this figure, the 
pretrained networks perform as feature extractors for generic 
image features and the two last layers are fully-connected 
layers for classification. We refer to this structure as single 
transfer learning network.  

The details of the features generated by the pretrained deep 
CNNs are summarized as follows: 



 Inception-v3: For one image, we extract a 2048-
dimensional feature from the last fully-connected  logits 
layer as shown in Fig. 1. 

 Resnet152: For one image, we extract a 2048-
dimensional feature from the last fully-pooling layer 
(Conv5x layer) as shown in Fig. 2. 

 Inception-Resnet-v2: For one image, we extract a 1536-
dimensional feature from the last fully connected layer 
after dropout as shown in Fig. 3. 

 
Fig. 4. The transfer learning structure for a single CNN (single transfer 
learning network). 

After pretraining, we concatenate the extracted features 
from three CNNs to form a 5632-dimensional feature vector. 
Fig. 5 shows the structure of the proposed feature 
concatenation scheme. As discussed in [19], since different 
CNN architectures can capture diverse information in 
microscopic images, such concatenation of multiple CNN 
features integrates the information from different CNNs 
together to create a more discriminative feature representation 
compared with a single CNN structure.  
 

Last, we feed the concatenated feature vector into two 
fully-connected layers for classification. Compared with the 
network structures in [18][19][23], we adjust the classification 
architecture by adding one more hidden layer. Such 
modification extends the learning capability of our network 
and helps to adopt the generic features extracted by the 
pertained CNNs to the specific microscopic image data. It is 
suggested in [19] to apply fine-tuning to the pretrained 
network. However, fine-tuning may cause the overfitting 
problem as the number of microscopic images for training 
might not be sufficient. Therefore, we formulate a simple 
structure for better adoption without overfitting.  
 

To summarize, we propose a transfer learning network 
structure based on feature concatenation and design a two-
layer fully-connected structure for generic feature adoption to 
microscopic image data. Fig. 5 illustrates the entire 
architecture of the proposed network. 
 

 
Fig. 5. Proposed feature concatenation network structure 

III. EXPERIMENTS 

A. Dataset Description 

We evaluated our proposed network structures on two 
benchmark microscopic datasets: PAP-smear [1] and 2D-Hela 
[2]. The PAP-smear dataset consists of 917 images of various 
resolutions belonging to two big categories: normal and 
abnormal. The 2D-Hela dataset consists of 862 fluorescence 
microscopic images in 10 categories. The typical images of 
PAP-smears and 2D-Hela datasets are shown in Fig. 6 and Fig. 
7, respectively. 

 

Fig. 6. Typical images in PAP-smear dataset  

Fig. 7. Typical images in 2D-Hela dataset 

B. Experimental Settings 

We randomly divide our dataset into training plus 
validation set (80% of the images) and testing set (20% of 
the images). Within the training plus validation set, 75% 
images are used for network training while the rest 25% 
are for validation. For hyper parameter optimization, a grid 
search is performed using four-folds cross validation and 
early stopping to avoid overfitting. The early stopping 
criterion is based on the validation performance, i.e., the 
training will be stopped if no further validation 
performance improvement is made after 500 iterations. 

 
 The weights of the network are randomly initialized 
with a zero-mean Gaussian distribution with standard 
deviation 0.001. The learning rate is updated with an 
exponential decay factor as: 
 

adaptive_learning_rate = 
learning_rate × decay_rate (step / decay_step)   (1) 


where the decay step is set to be 1000. The experiments 
are designed with 30 independent trials and the average 
testing results are recorded for comparison. 

C. Experimental results and Analysis 

We first compare the classification accuracy of our 
proposed feature concatenation network structure with the 
three single transfer learning network structures. Among 



them, the single transfer learning network structures with 
Inception-v3 and Resnet152 are similar to the GoogLeNet 
and Resnet version of the network proposed in [23], 
respectively, except that we replace GoogLeNet (which is 
known as Inception-v1) with a newer version Inception-v3, 
Resnet50 with a deeper version Resnet152. Table I shows 
the average classification accuracy and its standard 
deviation obtained by the proposed network and three 
compared transfer learning network structures. It is noted 
from Table I that the proposed feature concatenation 
network consistently performs better than the three 
compared single transfer learning networks on the two 
datasets. Particularly, it is noted that the performance of 
the three single transfer learning networks varies greatly 
on the two datasets. For example, the single transfer 
learning network with Inception-Resnet-v2 produces the 
best performance on the 2D-Hela dataset among the three 
single transfer learning networks (with average accuracy 
of 92.00%), but it performs the worst on the PAP-smear 
dataset (with average accuracy of 89.25%). From the 
comparison made among the proposed feature 
concatenation structure and the single CNN networks, we 
conclude that: 
 For a particular dataset, each of the three pretrained 

deep CNNs extracts distinct features from input images. 
This results in different capabilities of capturing the 
subtle differences between categories. Thus, the 
performance of each single transfer learning network 
varies greatly with different datasets. Choosing one 
pretrained network that suits all datasets at hand with a 
single transfer learning network structure is difficult. 

 The concatenation of features from various pretrained 
networks helps to overcome the limitations of single 
network and produces robust and superior performance. 

TABLE I.  CLASSIFICATION ACCURACY OF TRANSFER LEARNING 
METHODS  

Methods 2D-Hela PAP smear 

Single transfer learning network 
with Inception-v3 [23] 90.72 ± 1.85 89.66 ± 1.89 

Single transfer learning network 
with Resnet152 [23] 89.72 ± 2.18 90.87 ± 1.48 

Single transfer learning network 
with Inception – Resnet v2  92.00 ± 1.97 89.25 ± 2.23 

Proposed features 
concatenation network 

92.57 ± 2.46 92.63 ± 1.68 

The format of the table is accuracy ± std (%) 

 

We also compare the proposed method with five 
traditional classification methods. In these methods, 
several hand-crafted features, such as SIFT, LBP, 
SAHLBP are used, combining with classifiers such as 
SVM and Softmax. Table II shows the average 
classification accuracies of all the compared methods. 
Among all compared algorithms, the one proposed in [6] 
achieves the highest classification accuracy (89.37 % for 
2D-Hela and 89.96 % for PAP-smear). Comparing with 
the method in [6], our proposed method shows significant 

accuracy gains of 3.20% on 2D-Hela and 2.67% on PAP-
smear datasets, respectively.  

TABLE II.  CLASSIFICATION ACCURACY COMPARISON WITH EXISTING  
METHODS 

Methods 2D-Hela PAP smear 

SIFT(BoW(VQ)+SPM+SVM) [24] 83.79 ± 2.5 84.03 ± 2.3 

LBP(BoW(VQ)+SPM+SVM) [25] 81.47 ± 2.1 81.43 ± 2.1 

SAHLBP(BoW(VQ)+SPM+SVM) 
[3] 

84.49 ± 2.2 86.21 ± 2.0 

SIFT+SAHLBP(BoW(VQ)+SPM+S
VM) [3] 

86.20 ± 2.5 87.63 ± 2.1 

SIFT(BoW(LLC)+SPM+Softmax) 
[6] 

89.37 ± 1.5 89.96 ± 1.4 

Proposed features concatenation 
network

92.57 ± 2.46 92.63 ± 1.68 

The format of the table is accuracy ± std (%) 

 

IV. CONCLUSION 

In this paper, we have proposed a transfer learning network 
by exploiting feature concatenation from three deep CNNs. In 
the experiments, the feature concatenation network shows 
superior performance to single CNN networks without 
concatenation. We also compare the proposed network with 
several traditional classification methods. Compared with the 
best competing method, the proposed method achieves 
significant accuracy gains (3.20% for 2D-Hela and 2.67% for 
PAP smear, respectively). Since transfer learning is adopted, 
the proposed method produces good classification 
performance without training deep neural networks from 
scratch. One future consideration regarding this method is 
extending the current concatenation scheme to combine both 
CNN and hand-crafted features or combine features from both 
low and high layers of the current deep CNNs to further 
improve classification performance.  
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