
Event-Driven Configurable Module with Refractory
Mechanism for ConvNets on FPGA

L. A. Camuñas-Mesa, Y. Domı́nguez-Cordero, T. Serrano-Gotarredona and B. Linares-Barranco

Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC y Universidad de Sevilla, Sevilla, Spain

Abstract—We have developed a fully configurable event-driven
convolutional module with refractory period mechanism that can
be used to implement arbitrary Convolutional Neural Networks
(ConvNets) on FPGAs following a 2D array structure. Using this
module, we have implemented in a Spartan6 FPGA a 4-layer
ConvNet with 22 convolutional modules trained for poker card
symbol recognition. It has been tested with a stimulus where 40
poker cards were observed by a Dynamic Vision Sensor (DVS)
in 1s time. A traffic control mechanism is implemented to down-
sample high speed input stimuli while keeping spatio-temporal
correlation. For slow stimulus play back, a 96% recognition rate
is achieved with a power consumption of 0.85mW. At maximum
play back speed, the recognition rate is still above 63% when
less than 20% of the input events are processed.

Index Terms—ConvNets, Refractory Period, Event-driven pro-
cessing, Reconfigurable Networks, AER vision

I. INTRODUCTION

THE development of bio-inspired event-driven neuromor-
phic Dynamic Vision Sensors (DVS) [1]–[3] provides a

revolutionary way of capturing visual scenes by generating
flows of events representing real-time visual information. Each
pixel in a DVS operates autonomously and sends out an
event (spike) whenever it senses a change of light greater
than a preset threshold. Therefore, the DVS generates a
continuous flow of events with a high temporal resolution
(sub-microsecond) representing reality dynamically, without
frames. Spiking Neural Networks (SNNs) [4] process flows
of events using different neuronal and synaptic models, per-
forming tasks like object tracking [5] or shape recognition [6].

The hardware implementation of complex SNNs is limited
in general by the all-to-all connectivity between layers of
neurons. This restriction is overcome by Convolutional Neural
Networks (ConvNets) [7], where each neuron is connected
only to a subset of neurons in the following layer, known
as projective field. These projective fields are common for
all neurons in each layer, which reduces the amount of
connections in the network, facilitating its hardware imple-
mentation. Although the ConvNets were originally developed
for frame-driven processing of static images [7], a previous
work proposed a method to transform a frame-driven ConvNet
into an event-driven one and implement it in software [8].

In this work, we present a configurable convolutional mod-
ule described in VHDL for FPGAs with a programmable
refractory period mechanism reproducing the behavior of
biological neurons based on a leaky Integrate-And-Fire model.
This module can build arbitrary large-scale ConvNets by
following the 2D array structure proposed by Zamarreño et al.

Fig. 1. Block diagram for the node designed to build 2D arrays.

[9]. A 4-layers ConvNet with 22 convolutional blocks trained
for poker card symbol recognition has been implemented in
one Spartan6 FPGA. A traffic control mechanism has been
proposed to discard input events when the event rate is too
high to process all the information in real time.

II. NETWORK NODE

The network architecture proposed in this work is based on
a configurable node that can be assembled in large 2D arrays,
following the block diagram in Fig. 1, with connections to 4
other neighboring nodes through North, South, East and West
ports. All these ports carry bidirectional flows of events (input
and output). Internally, all ports are connected to a router,
which sends each incoming event to either the appropriate
output port or to the local convolutional module, depending
on both the event header and the previously programmed
routing table, following the destination-driven protocol [9].
All programmable parameters both in the router or in the
convolutional module are set by the configuration block, which
receives commands through a Serial Peripheral Interface (SPI).

III. CONVOLUTIONAL MODULE

The convolutional module designed inside the network node
shown in Fig. 1 computes the 2D convolution of the input
events evin(t, x, y, p) with a kernel wk(x, y), generating the
output events evout(t, x, y, p), where t is time, x and y are
the spatial coordinates, p is the polarity of the event, and k is
the kernel id, as multi-kernel processing is allowed (applying
a different kernel k to each incoming event, depending on
where it comes from). The state of the convolution (the values



of all pixels or neurons) is stored in the Neuron Memory,
while the Kernel Memory stores all the kernel values and their
corresponding parameters (x- and y-size, and center shift).
Another memory is used to implement the refractory period
mechanism described later. The convolutional module receives
configuration data through an SPI interface, which is used to
write the kernels (with their parameters) and the parameters
of the controller (threshold, leakage, refractory period).

The convolutional module is fully configurable, includ-
ing some parameters which have to be adjusted before the
hardware implementation (address space of input and output
events, size of the different memories and range of the
refractory period) and some other parameters which can be
modified after implementation using the SPI interface (inte-
gration threshold, leakage parameters, refractory period, and
the kernel values with their parameters). The behavior of the
module can be described by the main convolutional operation
and other mechanisms which take place simultaneously: global
leackage, refractory period and traffic control.

A. Convolutional operation

Each time a new incoming event arrives at the convolutional
module, it is stored in the input FIFO and follows these steps:

1) Read the event from the input FIFO, with the address
(xiin, y

i
in), the polarity piin, and the kernel id ki.

2) Using ki, read the size and center shift of the kernel.
This information, with the event address, gives the
coordinates of the pixels which have to be updated.

3) Calculate the positions of the pixels in the neuron
memory, and the kernel weights in the kernel memory.

4) One by one, read pixel value and kernel weight, and add
them. If the event is negative, invert the kernel weight.

5) If the result is larger than the threshold, check the
refractory period TR. If firing event is allowed, go to
step 6. If not, update the pixel.

6) Generate an output event with address (xjout, y
j
out) and

polarity pjout, and write it in the output FIFO, reset the
pixel and update it in its memory position.

B. Global leakage

In parallel with the convolutional operation, a global leakage
process runs continuously. A global 32-bit counter is increased
with every clock cycle, until it reaches the previously pro-
grammed value Tleak. This process has the highest priority,
and every time it reaches Tleak it decreases all neuron values
by Nleak if they are positive, and increases them if they are
negative, never crossing the reset value.

C. Refractory period

The main novelty of this work is the hardware implemen-
tation of a mechanism that emulates the refractory period
property of biological neurons. This property guarantees a
minimum separation in time (given by TR) between two
consecutive spikes generated by a single neuron.

Fig. 2(a) illustrates how the neuron state is increased every
time a new input event arrives until it reaches the threshold.

At t = t0, an output event is sent and the neuron state is reset,
so the module reads the present time t0 in the 32− bit global
counter (see Fig. 2(b)) and calculates the future time when it
will allow another output spike tlim. This future time is given
by tlim = t0 + TR − ∆t, where t0 is the present time, TR
the refractory time, and ∆t is a small correction applied to
compensate for frequency deviations. At t = t1, the neuron
reaches the threshold (Fig. 2(a)), but it is not allowed to send
an output event, as t1 < tlim. Therefore, the neuron keeps the
threshold value until t2, when a new input event is received
and an output event is finally sent (because t2 > tlim).

The resolution of the global counter is 32 bits, so that is
also the size of tlim. However, we reduced the needed memory
resources by storing only 8 bits per pixel (t8blim in Fig. 2(b)),
from bTR to bTR − 7. The value of bTR is a parameter that
must be specified before implementation (31 ≥ bTR ≥ 7),
and it corresponds to the MSB (Most Significant Bit) of the
refractory period TR. Therefore, the possible values of TR
that can be programmed after implementation will be limited
between Tmin

R = 2bTR and Tmax
R = 2bTR+1 − 1.

According to this strategy, 8 bits from tlim (t8blim) are stored
at the refractory period memory for that pixel. After that, the
next time this pixel reaches the threshold, the module reads
the time t1 in the 32− bit global counter, extracts 8 bits from
it (t8b1 , from bTR to bTR − 7, see Fig. 2(c)) and compares
it with t8blim. If t8b1 > t8blim, it sends out the event; otherwise,
it stores the threshold in the neuron memory and waits for
the next incoming event. However, this mechanism can cause
wrong decisions, as the bits more significant than bTR are not
compared (it can happen that t8b1 < t8blim while t1 > tlim). To
avoid this, a refresh mechanism is implemented by generating
a global refresh pulse every time the global counter reaches the
value 2bTR+1− 1 (all bits from bTR to b0 set to 1), indicating
overflow. Every time a global refresh pulse is generated, all
overflow flags fof with 1 value are set to 0, while flags with
0 value set their corresponding tlim to 0, making sure that the
pixel will be allowed to fire.

Finally, the ∆t correction applied to the calculation of tlim
is also illustrated in Fig. 2(a). When the first output event is
generated at t0, we assume no previous activity and ∆t =
0. However, the second output event occurs at t2, although
it should have been generated at tlim, being delayed by the
refractory period mechanism. In this particular example, after
sending out the event at t2, the next tlim would be calculated
as tlim = t2 + TR − ∆t2.

D. Traffic control mechanism

The convolutional module generates a fullFIFO signal
when the output FIFO is full, and this signal is used to
implement a traffic control mechanism in an arbitrary network.
Considering that the network receives events from a DVS
using AER protocol, we implemented a mechanism which
drops input events whenever a module in the network has the
fullFIFO signal active. Instead of holding the acknowledge
and introducing artificial delays, this mechanism reduces dy-
namically the amount of input events while keeping the spatio-
temporal correlation between them.



Fig. 2. Refractory period mechanism. (a) A pixel fires an event at t = t0, so no output events are allowed until tlim = t0 + TR − ∆t. The pixel reaches
the threshold at t1 (< tlim), so it keeps that state until t2. (b) At t = t0, future time tlim is calculated using the value in the 32 − bit global counter. Only
8 bits of tlim are stored (t8blim). (c) It reaches the threshold again at t = t1. As t1 < tlim, no output event is allowed. For that, t8b1 and t8blim are compared.

Fig. 3. Schematic block diagram of the Convolutional Neural Network used
for poker card symbol recognition [8].

IV. CONVNET FOR RECOGNITION TASKS

As described in Section II, the network node has been
designed to assemble large 2D arrays in order to implement
Convolutional Neural Networks (ConvNets). As an example,
we implemented on FPGA the ConvNet described by Pérez-
Carrasco et al. [8] for poker card symbol recognition (Fig. 3).
It consists on 4 convolutional layers (C1, C3, C5 and C6 in
the figure) and 2 subsampling layers (S2 and S4). We need 22
convolutional modules to implement the network: 6 modules
with 28×28 pixels in layer C1, 4 modules with 10×10 pixels
in layer C3, 8 modules with 1 pixel in layer C5 and 4 modules
with 1 pixel in layer C6. In the present work, these modules
are placed in an array of 6 × 4, programming the internal
routers in each module to reproduce the network connectivity.

The network parameters were mapped from those given by
Pérez-Carrasco [8] following a two-stage procedure. First, am-
plitude parameters (weights and thresholds) and time parame-
ters (refractory periods and leakage rates) were adapted (scaled
and rounded) to the hardware implementation, and second,
they were tuned to compensate for hardware nonidealities by
using a simulated annealing optimization algorithm.

V. EXPERIMENTAL RESULTS

The convolutional board and the whole network were tested
using three boards: an AER data player [10] which receives a
list of AER events through a USB port, a nodeboard with

a Spartan6 FPGA where the network is implemented, and
another AER board which receives the output AER events and
sends them to a PC [10]. A micro-controller in the nodeboard
receives the configuration parameters from a PC and sends
them to the FPGA through an SPI interface.

A. Characterization of convolutional module

A single convolutional module was implemented on FPGA
and different values of TR were programmed covering the
whole desired working range (51.2ms, 3.2ms, 200µs, 50µs).
For each case, a 1 × 1 kernel with value 1 and th = 10 were
configured. The input stimulus was a train of events with fixed
address and inter-spike interval following a normal distribution
with mean 1/fin and standard deviation stdin = 10% of the
mean. Therefore, with no refractory limitation, the output aver-
age frequency would be fout = fin/10, with stdout = stdin.
Fig. 4 shows fout vs fin, where each subplot corresponds to
a different value of TR. The error bars represent the standard
deviation of the measured output frequencies. Having a closer
look at Fig. 4(a), there is a saturation frequency fsat =
1/TR = 19.53Hz, so for values of fin < th×fsat = 195.3Hz
there is a linear relationship, while larger input frequencies
produce saturation. As TR decreases in Fig. 4(b)-(d), the
different subplots reproduce the same behavior, until the inter-
spike interval becomes comparable with the global refresh
pulse applied by the refractory period mechanism.

B. ConvNet characterization

The ConvNet described in Section IV was implemented and
tested on FPGA. This network consists of 22 convolutional
blocks distributed in 4 layers, with a total number of 5 116
neurons and 531 232 synapses, and consumed 93% of the
available slices on the Spartan6 FPGA (21 465 out of 23 038).
In order to characterize this network, a sequence of events was
reproduced by an AER data player and sent to the FPGA.
These events were previously recorded using a Dynamic
Vision Sensor (DVS) [3] which was observing a deck of 40
poker cards running in 1 second. The recorded events were
pre-processed to track the symbols and extract a 32×32 pixels
window of the whole visual field showing only the centered



Fig. 4. Characterization of the refractory period for one single convolution
pixel with kernel = 1 and th = 10. Each subplot corresponds to a different
value of TR: (a) 51.2ms, (b) 3.2ms, (c) 200µs and (d) 50µs.

Fig. 5. Characterization of the network for poker card symbol recognition
with different values of the slow-down factor. (a),(b) Recognition rate (in %),
where blue trace includes traffic control mechanism, while the red trace does
not. (c),(d) Proportion of processed input events (in %).

40 symbols. This stimulus consists of 174 644 events with
an exact duration of 950ms, which corresponds to an average
event rate of 184Keps (events per second). When this stimulus
is processed by this ConvNet, the total traffic registered inside
the network is formed by 3 172 361 events, which corresponds
to an event rate of 3.34Meps. This event rate is higher than the
capabilities of the network. In order to test the behavior of the
network when processing this stimulus, different slow-down
factors were applied to the input events (100, 50, 20, 10, 5, 2
and 1) to reduce the speed of the data. For each factor, the time
constants of the network were also scaled proportionally. Fig.
5 shows the behavior of the network for poker card symbol
recognition with each slow-down factor, illustrating the effect
of the proposed traffic control mechanism.

For each time interval associated to one of the 40 symbols,
the output events generated by the four neurons in the last layer
were observed. Positive events indicate a symbol recognition,
so we counted the positive events generated by each of these
output neurons, obtaining ns, nh, nd and nc (number of
positive events associated to spades, hearts, diamonds and
clubs, respectively). For example, if ns > nh, nd, nc, we

consider that the network recognized a spade. Following this
criterion, we measured the recognition rate for each trial as the
number of symbols recognized correctly over the total number
of presentations. Fig. 5(a)-(b) shows a comparison between the
recognition rates obtained for the implemented network with
the proposed traffic control mechanism (blue trace) and those
obtained for the network without traffic control (red trace).
For slow-down factors larger or equal than 5, the recognition
rates obtained for both networks are almost identical (above
90%), while larger event rates (factors 1 or 2) demonstrate
the advantages of the proposed method, with recognition rates
around 65% and 22%, respectively, when processing the real
time recording. Fig. 5(c)-(d) shows the proportion of input
events actually processed in each case. When there is no traffic
control, all events are processed by the network (although
they are delayed by the handshake protocol between different
network modules, altering the spatio-temporal correlation of
the events), as represented by the red trace. However, the
proposed mechanism discards input events when any convolu-
tional block is saturated, producing a reduction of the number
of processed events as the event rate increases (blue trace). In
the most conservative case (factor 100), the recognition rate
is larger than 96%, with 100% of the input events actually
processed. When the factor is 5, the proportion of processed
events drops dramatically to around 45% while the recognition
rate is still larger than 90%. Even when the recording is
processed at real time, a recognition rate of around 65% is
obtained with less than 20% of the input events.

The power consumed by the whole network was measured
while processing the input sequence for different slow-down
factors, obtaining 7.7mW at real time, and even lower con-
sumptions for slower processing: 5.25mW when it was 10
times slower, and 0.85mW for a factor of 100.

VI. CONCLUSION

A new configurable event-based convolutional module with
refractory period mechanism has been designed for hardware
implementation of ConvNets on FPGA. This module was
designed to assemble large 2D arrays, implementing a traffic
control mechanism to discard input events when the network
is busy, keeping spatio-temporal correlation and avoiding
artificial delays. A 4-layer ConvNet has been implemented
on a Spartan6 FPGA with more than 5K neurons and 500K
synapses. Recognition rates around 96% were obtained for
slow stimuli, 63% was obtained at high speed while less than
20% of the events were processed, demonstrating the robust-
ness of the method even when the input stimulus is barely
visible by a human observer. Arbitrary ConvNets can be easily
implemented using the proposed module and methodology.

ACKNOWLEDGMENT

This work was partly funded by the EU Horizon 2020 Pro-
gramme under grant no. 644096 (ECOMODE) and grant no.
687299 (NEURAM3), by Spanish research grant TEC2015-
63884-C2-1-P (COGNET) (with support from the European
Regional Development Fund), and by Andalusian research
grant TIC-6091 (NANONEURO). L. A. Camuñas was funded
by Spanish research fellowship “Juan de la Cierva”.



REFERENCES

[1] P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128x128 120dB 15µs
latency asynchronous temporal contrast vision sensor,” IEEE Journal on
Solid-State Circuits, vol. 43, no. 2, pp. 566-576, 2008.

[2] C. Posch, D. Matolin, D. and R. Wohlgenannt, “A QVGA 143 dB
dynamic range frame-free PWM image sensor with lossless pixel-level
video compression and time-domain CDS,” IEEE Journal on Solid-State
Circuits, vol. 46, no. 1, pp. 259-275, 2011.

[3] T. Serrano-Gotarredona and B. Linares-Barranco, “A 128x128 1.5%
contrast sensitivity 0.9% FPN 3µs latency 4mW asynchronous frame-free
dynamic vision sensor using transimpedance amplifiers,” IEEE Journal on
Solid-State Circuits, vol. 48, no. 3, pp. 827-838, 2013.

[4] W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[5] T. Delbrück, M. Lang, “Robotic goalie with 3ms reaction time at 4% CPU
load using event-based dynamic vision sensor,” Frontiers in Neuroscience,
7:223, 2013.

[6] B. Zhao, R. Ding, S. Chen, B. Linares-Barranco and H. Tang, “Feedfor-
ward categorization on AER motion events using cortex-like features in
a spiking neural network,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 26, no. 9, pp. 1963-1978, 2015.

[7] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard and L. D. Jackel, “Backpropagation applied to handwritten zip
code recognition,” Neural Computation, vol. 1, no. 4, pp. 541-551, 1989.

[8] J. A. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-
Gotarredona, S. Chen and B. Linares-Barranco, “Mapping from frame-
driven to frame-free event-driven vision systems by low-rate rate-coding
and coincidence processing. Application to feed-forward ConvNets,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
35, no. 11, pp. 2706-2719, November 2013.

[9] C. Zamarreño-Ramos, A. Linares-Barranco, T. Serrano-Gotarredona and
B. Linares-Barranco, “Multicasting mesh AER: a scalable assembly
approach for reconfigurable neuromorphic structured AER systems. Ap-
plication to ConvNets,” IEEE Transactions on Biomedical Circuits and
Systems, vol. 7, no. 1, pp. 82-102, February 2013.

[10] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco,
R. Paz-Vicente, F. Gómez-Rodrı́guez, L. Camuñas-Mesa, R. Berner,
M. Rivas, T. Delbrück, S. C. Liu, R. Douglas, P. Häfliger, G.
Jiménez-Moreno, A. Civit, T. Serrano-Gotarredona, A. Acosta-Jiménez,
B. Linares-Barranco, “CAVIAR: A 45k-Neuron, 5M-Synapse, 12G-
connects/sec AER Hardware Sensory-Processing-Learning-Actuating
System for High Speed Visual Object Recognition and Tracking,” IEEE
Transactions on Neural Networks, vol. 20, No. 9, pp. 1417-1438, Septem-
ber 2009.


