
Road Segmentation Using CNN and Distributed
LSTM

Yecheng Lyu, Lin Bai and Xinming Huang
Department of Electrical and Computer Engineering

Worcester Polytechnic Institute
Worcester, MA 01609, USA

{ylyu,lbai2,xhuang}@wpi.edu

Abstract—In automated driving systems (ADS) and advanced
driver-assistance systems (ADAS), an efficient road segmenta-
tion is necessary to perceive the drivable region and build
an occupancy map for path planning. The existing algorithms
implement gigantic convolutional neural networks (CNNs) that
are computationally expensive and time consuming. In this paper,
we introduced distributed LSTM, a neural network widely used
in audio and video processing, to process rows and columns
in images and feature maps. We then propose a new network
combining the convolutional and distributed LSTM layers to
solve the road segmentation problem. In the end, the network is
trained and tested in KITTI road benchmark. The result shows
that the combined structure enhances the feature extraction
and processing but takes less processing time than pure CNN
structure.

Index Terms—Autonomous vehicle, road segmentation, CNN,
LSTM

I. INTRODUCTION

In recent years, growing research interest is witnessed
in automated driving systems (ADS) and advanced driver-
assistance systems (ADAS). As one of the essential modules,
road segmentation perceives the surroundings, detects the
drivable region and builds an occupancy map [1] [2] [3] [4].
A drivable region is a connected road surface area that is
not occupied by any vehicles, pedestrians, cyclists or other
obstacles. In the ADS workflow, road segmentation contributes
to other perception modules and generates an occupancy map
for planning modules. Therefore, an accurate and efficient road
segmentation is necessary.

Camera-based road segmentation has been investigated for
decades since cameras generate high-resolution frames fre-
quently and they are cost effective. Traditional computer vision
algorithms employed manually defined features such as edges
[5] and histogram [6] for road segmentation. Those features,
however, worked on limited situations and were difficult to
extend to new scenarios [1].

Convolutional neural network (CNN) based algorithms at-
tracted research interest in recent years. By implementing
massive convolutional kernels to a deep neural network, CNNs
are capable to handle various driving scenarios. Existing CNN
based road segmentation algorithms such as FCN [7], SegNet
[8], StixelNet [9], Up-conv-Poly [10] and MAP [11] generated
a precise drivable region but required large computational.
Table II presents their performance on KITTI road benchmark

as well as their parameter counts, floating-point operations
and running time for each frame processing. Recent research
proposed several efficient networks and network structures
such as MobileNet [12] and Xception [13]. However, they
were still too large to work on embedded systems. In our
previous work [14] we explored the use of CNN stack to
process the camera data and implemented on a VLSI die but
experienced high memory usage.

Long-Short Term Memory (LSTM) is a kind of recurrent
neural networks (RNNs) that are often used to process stream-
ing data such as an audio signal and video sequences. By
introducing memory cells and gates, LSTM units are capable
to extract context features in a long sequence of inputs.
Recently, distributed LSTMs are introduced to share the LSTM
kernel weights in multi-sequence processing. However, LSTM
and distributed LSTM algorithms only focus on time-domain
processing.

In this paper, we introduce the distributed LSTM to work on
spatial domain and process row sequences on camera frames
and corresponding feature maps. This is one of the first efforts
to LSTM on spatial sequence processing. We also propose
a deep neural network that combines the convolutional layer
and distributed LSTM layers on the spatial domain to solve
road segmentation tasks. The proposed network is trained and
tested on the KITTI road benchmark [15]. It is shown that the
proposed method achieves comparable accuracy to the existing
solutions but takes fewer calculations and less processing time.
The result shows that LSTM structures significantly enhance
the context feature extraction in a large feature map. The rest
of the paper is organized as follows: Section IIcompares the
scheme of the convolutional layer and the distributed LSTM
layer on feature map processing. Section III introduces the
proposed network that combines CNN and distributed LSTM.
In Section IV, we evaluate the proposed network in the KITTI
road benchmark. Section V concludes the paper.

II. COMPARISON OF CONVOLUTIONAL LAYER AND
DISTRIBUTED LSTM LAYER

In this section, we compare the scheme, sensing area and
computational complexity of CNN and distributed LSTM
structure in a feature map processing and try to show their
advantages and disadvantages in feature map processing.

Suppose we have a feature map that is formatted as a w1×
h1 × d1 tensor. A convolutional kernel of size wk × hk × dx,

ar
X

iv
:1

80
8.

04
45

0v
2 

 [
cs

.C
V

] 
 5

 M
ar

 2
01

9



stride (sw, sh) and padding (pw, ph) is designed to process
the feature map. The scheme is described in Figure 1(a). The
kernel initially convolutes the first patch in red and generates
a 1×1×dk vector. Then the kernel strides certain pixels to the
right and convolutes the next patch. After all available patches
are convoluted, a w2 × h2 × d2 output tensor is generated.
(1) - (3) presents the relationship between the size of output
tensor, input tensor and kernel settings. In each step there are
wk × hk × d1 inputs contribute to a 1× 1× dk output vector.
Floating-point operations for this layer is w2×h2×d1×wk×
hk × dk × 2.

w2 =

[
w1 + 2pw

sw

]
(1)

h2 =

[
h1 + 2ph

sh

]
(2)

d2 = dk (3)

On the other hand, suppose we have a feature map of the
same size, and we now have h1 distributed LSTM units with
dl memory cells. The units share the same weights and bias
but work on different rows of the feature map. In addition,
we configure the LSTM units to return an output vector in
each step. The scheme is illustrated in Figure 1(b). In each
step, each distributed LSTM unit inputs a 1 × 1 × d1 vector,
updates its memory states through gate functions and output
a 1 × 1 × dl vector. Therefore, the distributed LSTM layer
generates a w1 × h1 × dl output tensor. In the ith step, there
are i × d1 inputs contribute to a 1 × 1 × dl output tensor.
Floating-point operations for this layer is w1×h1×8×d1×dl.

Comparing the convolutional layer and distributed LSTM
layer, we have the following conclusions:

(1) If convolutional layer and distributed LSTM layer have
the same output size, the ratio of the floating-point operations
is wk × hk : 4. Considering that wk > 3 and hk > 3
, a distributed LSTM layer save at least 56% floating-point
operations than a convolutional layer.

(2) If convolutional layer and distribute LSTM layer have
the same output size, the ratio of the average number of
contributing input cells is 9 : w1/2. Considering that w1 is
hundreds to thousands in a feature map, a distributed LSTM
layer has a much larger sensing area than convolutional layers.

(3) Each kernel in a convolutional layer has a sensing area
covering multiple rows but each unit in a distributed LSTM
layer works on a single row. Therefore, a convolutional layer
has a better feature extraction vertically.

(4) A convolutional layer can generate a smaller feature map
by setting the sw and sh greater than one, but a distributed
LSTM layer cannot. Therefore, in a deep neural network, a
convolutional layer is useful to narrow the feature map to
enlarge the equivalent sensing area for the following layers
and save their floating-point operations.

(5) We can combine the convolutional layer and distributed
LSTM layer layers in a deep neural network, and the new
network should take fewer calculations but has an enhanced
ability to extract context features in horizontal.

(a) Convolutional Layer (b) Distributed LSTM layer

Figure 1: Comparison of convolutional layer and distributed
LSTM layer schemes

III. PROPOSED NETWORK

This section introduces the proposed neural network. The
network targets to solve a sequential regression problem whose
input is a multi-layer feature and whose output is a row vector
that has the same width of the input. The network contains
three (1) a CNN based local feature encoder, (2) a CNN
and LSTM based feature processor, and (3) a CNN based
output decoder. Figure 2 presents an overview of network
architecture.

A. Local feature encoder

The local feature encoder is a group of convolutional layers
designed to extract local features and narrow the feature
map size. Commonly a CNN based encoder cascades several
convolutional layers with small kernels into blocks because
those blocks have fewer parameters to train but work better in
non-linear feature extraction. Those blocks are obvious in FCN
[7], SegNet [8], and StixelNet [9]. In our work, we cascade
six convolutional layers with a 3 × 3 × 64 kernel and group
them two by two. The first layer in each group is configured
to stride = (2, 2) and the second layer is configured to
stride = (1, 1). Therefore, in each group the size of output
tensor is half the size of its input tensor in both in both axes.
Eventually an input tensor of size w1 × h1 × d1 will result in
a w1

8 × h1

8 × 64 output tensor.

B. Feature Processor

The feature processor is designed to extract context features
over the entire feature map. It is built by several blocks of
convolutional layers and distributed LSTM layers. Each block
includes a convolutional layer of 3 × 3 × 64 kernel and a
distributed LSTM layer of 64 memory states. In the feature
processor blocks, there is no pooling layer added so that the
input and output tensor have the same size.

C. Output decoder

The output decoder is designed to decode the output tensor
of the feature processor to a final row vector. The decoder
upsamples the feature map in horizontal but further narrow
the feature map in vertical. Since our decoder concentrates
on the upper boundary of the drivable region that connects to



Figure 2: Diagram of the proposed network

the bottom of image frame, it has fewer layers, parameters and
calculations than the decoder in SegNet. The decoder includes
several convolutional layers, and an upsampling layer. The
output size is w1 × 1× 1.

IV. NETWORK IMPLEMENTATION, TRAINING AND TESTING

In this section, we evaluate the performance of the proposed
network using KITTI road benchmark. We first introduce the
benchmark and then present our solution using the proposed
network. We also present the training scheme for the training
set and test result from the testing set.

A. KITTI road benchmark

KITTI road benchmark is a widely used benchmark for
drivable region segmentation. It contains 290 training samples
and 289 testing samples recorded in a real driving scenario.
The size of camera frames in the benchmark is 1242 × 375
or 1224 × 370. The drivable region is manually labeled in a
binary map of the same size. In the KITTI road benchmark,
F1-score (F1) and average precision (AP) are the main metrics
to evaluate the accuracy of road segmentation solutions. Other
metrics are precision (PRE), recall (REC), false positive rate
(FPR), false negative rate (FNR) and running time. The metrics
are calculated as in (4) - (9) where TP, TN, FP, FN denote true
positive, true negative, false positive, and false negative.

PRE =
TP

TP + FP
(4)

REC =
TP

TP + FN
(5)

FPR =
FP

TP + FP
(6)

FNR =
FN

TP + FN
(7)

F1 =
2 · PRE ·REC

PRE +REC
(8)

AP =
TP + TN

TP + FP + TN + FN
(9)

Table I: Detailed Network Blocks

Layer Kernel
(w1×h1×d1)

Input
(w × h× d)

Output
(w2×h2×d1)

Input − 600×160×5 −
Conv1

s=2 3× 3× 64 600×160×5 600×160×64

Conv2 3× 3× 64
600× 160×

64
600×160×64

Conv3
s=2 3× 3× 64 300×80×64 300× 80× 64

Conv4 3× 3× 64 300×80×64 300× 80× 64
Conv5

s=2 3× 3× 64 150×40×64 150× 40× 64

Conv6 3× 3× 64 150×40×64 150× 40× 64
Conv7 3× 3× 64 75× 20× 64 75× 20× 64

D-LSTM 1 64 75× 20× 64 75× 20× 64
Conv8 3× 3× 64 75× 20× 64 75× 20× 64

D-LSTM 2 64 75× 20× 64 75× 20× 64
Conv9 1× 5× 64 75× 20× 64 75× 4× 64
Conv10 1× 4× 1 75× 4× 64 75× 1×1

Up-
sample 8× 1× 1 75× 1× 1 600× 1× 1

Output − − 600× 1× 1

B. Scheme of road segmentation

1) Pre-processing: In pre-processing, we apply a pyramid
approach that generates two input tensors from each camera
frame. The first input tensor focus on near-range segmentation
and the second one focus on far-range segmentation. For the
first one, the camera frame is scaled to size 600×160. For the
second input tensor, however, the camera frame is cropped to
size 600×160 in the center. Those two images are then fed into
the tensors together with their horizontal and vertical indexes
in their own image coordinate. The pyramid scheme narrows
the difference between local features in the near range and
far range. It also enlarges the training set for better parameter
tuning. After pre-processing, those two input tensors of size
600 × 160 × 5 are processed by two network instances in
parallel.

2) Network implementation: The proposed network is im-
plemented in the Keras platform with TensorFlow backend
as described in Section III. The details of each layer are
presented in Table I. The network has 348,801 parameters
and takes 3.45 billion floating-point operations to process
each input tensor. Table II compares the proposed network
with related works on accuracy, network parameters, floating-
point operations and running time for each camera frame. The
proposed network has only 24% parameters and takes 1.36%
floating-point operations when comparing to SegNet.

3) post-processing: After processing two input tensors in
the network, we now have results as two row vectors. The
elements in the row vector denote the vertical position of
the drivable region boundary in the corresponding column. To
transform the row vectors to a drivable region on the camera
frame, we draw a polygon that connects corresponding vertices
and the bottom line. At last, we scale the first result map to the
original size and overwrite the center pixels using the second
result map as illustrated in Figure 3.



Table II: Comparison between networks on the KITTI [15] road segmentation challenge: F1-score (F1), average precision
(AP), precision (PRE), recall (REC), false positive rate (FPR), false negative rate (FNR), number of parameters (Para), floating
operations (FL-OPs) and runtime

Method F1 AP PRE REC FPR FNR Para FLOPs Runtime
ours 89.08% 91.60% 88.12% 90.06% 6.69% 9.94% 0.35M 6.9B 16 ms

ours without LSTM 81.84% 73.27% 81.66% 82.02% 10.15% 17.98% 0.36M 7.0B 16 ms
MAP [11] 87.80 % 89.96% 86.01% 89.66% 8.04% 10.34% 457.43M 7.15B 280ms

StixelNet [9] 89.12% 81.23% 85.80% 92.71% 8.45% 7.29% 6.82M 43.0B 1s
Up-Conv-Poly [10] 93.83% 90.47% 94.00% 93.67% 3.29% 6.33% 19.44M 31.5B 83ms

Figure 3: An illustration of the pyramid prediction scheme

C. Network training and testing

The proposed network is trained in KITTI road training set.
There are 289 training samples and the image sizes range from
1242×375 to 1224×370. The ground truth of each sample is
formatted as a binary image with the same size. To augment
the training set we scale the sample images by 0.5 and 1.0
and then use a sliding window of size 600 × 160 to capture
the images and labels. The stride of the sliding window is 60
pixels in horizontal and 20 pixels in vertical. Finally, 20, 808
samples are generated. Those samples are separated into a
20, 000 sample training set and an 808 sample validating set.
We also add Gaussian noise to the input data with a standard
deviation of 0.02% for additional diversity. Adam [16] is a
gradient descent based optimizer that adjusts learning rate
on each neuron according to the estimation of lower-order
moments of the gradients. We choose this optimizer because
it accelerates the converging process in the beginning and
slows it down near optimum. During training, the input batch
size is set to 100 and reference learning rage is set to 1e−5.
After training 80 epochs we get 0.0185 mean average error
on validation data.

We then apply the network on the KITTI road testing
set and submit to the benchmark server. The result shows
that the proposed solution achieved 89.08% in F1-score and
91.60% in average precision (AP), which are comparable to
the existing approaches. In Table II our work is compared
to the related solutions listed on the KITTI road benchmark.
It shows that our work has a similar F1-score and AP to
other works but a higher precision and lower false positive
rate. The proposed network has fewer parameters to train and

Figure 4: Typical road segmentation results

takes less floating-point operations to process. When testing on
an NVidia GTX 950M GPU, the proposed solution achieved
16 ms/frame network runtime. We also trained a pure-CNN
network by replacing the distributed LSTM layers with 3× 3
convolutional layers. The accuracy of the pure-CNN solution
is worse than that of CNN-LSTM solution, as shown in Table
II.

Figure 4 shows the typical result of the proposed road
detector. Green pixels are true positives, red pixes are false
negatives, and blue pixels are false positives. It is obvious
that most of the road surface is detected, and obstacles such
as vehicles and railways are separated to avoid collisions.
False negatives occasionally appear at road-vehicle and road-
sidewalk interfaces , which is not a safety concern for auto-
mated driving. However, false positive on the sidewalks needs
further corrections.

V. CONCLUSION

In this paper, we compare the convolutional layer and
distributed LSTM layer and demonstrate the advantages of
combing the CNN and LSTM structures for spatial feature map
processing. We also propose a neural network to evaluate its
performance. The test result on the KITTI road benchmark
shows that our solution achieves 89.08% in F1-score and
91.60% in average precision. However, the image-based road
segmentation is subjected to illumination conditions. Shadows,
blurs, and ambiguous textures can cause false positives and
false negatives. In future work, a fusion of multiple sensors
including camera, LiDAR and radar will be applied to improve
the road segmentation as well as object detection.

VI. ACKNOWLEDGEMENT

This work is supported by U.S. NSF Grant CNS-1626236.



REFERENCES

[1] Aharon Bar Hillel, Ronen Lerner, Dan Levi, and Guy Raz. Recent
progress in road and lane detection: a survey. Machine vision and
applications, 25(3):727–745, 2014.

[2] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Ro-
bicquet, Li Fei-Fei, and Silvio Savarese. Social lstm: Human trajectory
prediction in crowded spaces. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 961–971, 2016.

[3] Yecheng Lyu, Lin Bai, and Xinming Huang. Real-time road segmen-
tation using lidar data processing on an fpga. In Circuits and Systems
(ISCAS), 2018 IEEE International Symposium on, pages 1–5. IEEE,
2018.

[4] Yecheng Lyu, Lin Bai, and Xinming Huang. Chipnet: Real-time
lidar processing for drivable region segmentation on an fpga. IEEE
Transactions on Circuits and Systems I: Regular Papers, 2018.

[5] Hunjae Yoo, Ukil Yang, and Kwanghoon Sohn. Gradient-enhancing
conversion for illumination-robust lane detection. IEEE Transactions on
Intelligent Transportation Systems, 14(3):1083–1094, 2013.

[6] Hunjae Yoo, Ukil Yang, and Kwanghoon Sohn. Gradient-enhancing
conversion for illumination-robust lane detection. IEEE Transactions on
Intelligent Transportation Systems, 14(3):1083–1094, 2013.

[7] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3431–
3440, 2015.

[8] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image segmenta-
tion. arXiv preprint arXiv:1511.00561, 2015.

[9] Dan Levi, Noa Garnett, Ethan Fetaya, and Israel Herzlyia. Stixelnet: A
deep convolutional network for obstacle detection and road segmenta-
tion. In BMVC, pages 109–1, 2015.

[10] Gabriel Leivas Oliveira, Wolfram Burgard, and Thomas Brox. Efficient
deep methods for monocular road segmentation. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2016),
2016.

[11] Ankit Laddha, Mehmet Kemal Kocamaz, Luis E Navarro-Serment, and
Martial Hebert. Map-supervised road detection. In Intelligent Vehicles
Symposium (IV), 2016 IEEE, pages 118–123. IEEE, 2016.

[12] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1705.04861, 2017.

[13] François Chollet. Xception: Deep learning with depthwise separable
convolutions. CoRR, abs/1610.02357, 2016.

[14] Yuteng Zhou, Yecheng Lyu, and Xinming Huang. Roadnet: an 80mw
hardware accelerator for road detection. IEEE Embedded Systems
Letters, 2018.

[15] Jannik Fritsch, Tobias Kuhnl, and Andreas Geiger. A new performance
measure and evaluation benchmark for road detection algorithms. In
Intelligent Transportation Systems-(ITSC), 2013 16th International IEEE
Conference on, pages 1693–1700. IEEE, 2013.

[16] Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic
Optimization. International Conference on Learning Representations
2015, pages 1–15, 2015.


	I Introduction
	II Comparison of convolutional layer and distributed LSTM layer
	III Proposed Network 
	III-A Local feature encoder
	III-B Feature Processor
	III-C Output decoder

	IV Network implementation, training and testing 
	IV-A KITTI road benchmark
	IV-B Scheme of road segmentation 
	IV-B1 Pre-processing
	IV-B2 Network implementation
	IV-B3 post-processing

	IV-C Network training and testing 

	V Conclusion 
	VI Acknowledgement
	References

