
VSCNN: Convolution Neural Network
Accelerator With Vector Sparsity

Kuo-Wei, Chang, and Tian-Sheuan Chang
Dept. of Electronics Engineering, National Chiao Tung University Hsinchu, Taiwan

Abstract—Hardware accelerator for convolution neural net-
work (CNNs) enables real time applications of artificial in-
telligence technology. However, most of the accelerators only
support dense CNN computations or suffers complex control to
support fine grained sparse networks. To solve above problem,
this paper presents an efficient CNN accelerator with 1-D vector
broadcasted input to support both dense network as well as vector
sparse network with the same hardware and low overhead. The
presented design achieves 1.93X speedup over the dense CNN
computations.

Index Terms—Hardware design, convolution neural networks
(CNNs), sparse CNNs.

I. INTRODUCTION

Convolution neural networks (CNN) have been widely used
in computer vision such as recognition [1]–[5], detection [6]–
[10], and autonomous vehicles during recent years for its
significant improvement over traditional approaches. However,
computations of CNNs demands a lot of multiplications and
accumulations (MACs), and millions of data amount per layer.
Thus, hardware accelerators for CNNs are required to meet
real time applications.

Various hardware accelerators have been proposed recently
[11]–[16], which can be divided into dense CNN or sparse
CNN computation types. The dense CNN types [11]–[14]
assume continuous and regular computational data flow to
the hardware accelerator, which results in simple and reg-
ular systolic array or filter-like architecture. However, CNN
computations contain a lot of zeros in its weight and input
activations due to model pruning [17] and popular ReLU
activation function. Exploring sparsity offers a significant
speedup option of the hardware accelerator. But this type of
sparsity is a fine grained sparse structure as shown in Fig. 1,
where the zero distribution is abundant but irregular and bad
for hardware design. To achieve sparse CNN computation, [11]
tried the gated input for zero input with the same dense CNN
design to save power, which did not save computation cycles.
[15] skipped zero weight computation on its single instruction
multiple data (SIMD) array by the zero weight indexing and
their distance. [16] explored both zero weight and input with
a nonzero data indexing system, computed them by a 2D
multiplier array, and accumulated those sparse outputs with the
help of coordinate computation to sort these irregular output.

K. Chang and T. Chang, ”VSCNN: Convolution Neural Network Acceler-
ator with Vector Sparsity,” 2019 IEEE International Symposium on Circuits
and Systems (ISCAS), 2019, pp. 1-5, doi: 10.1109/ISCAS.2019.8702471.

All these designs [11], [15], [16] are for the fine grained
sparsity. The irregularity of the fine grained sparsity results in
significant area cost on the indexing system and data routing.

To reduce above cost while still explore the benefit of
sparsity, this papers proposes a CNN accelerator to support
dense CNN computation as well as vector sparse CNN on
both weight and input. The vector sparsity as shown in Fig. 2
[18] has vectors of zeros instead of fine grained ones, which
enables regular hardware design and still offers zero skipping
benefits as shown in our experimental results. To support
this, the proposed design operates on a 1-D to 1-D matrix
multiplication with broadcasted 1-D weight and input, which
enables zero vector skipping easily.

This CNN accelerator design has the following contributions

• Support dense CNN, and vector sparse CNN in one
design with the same accumulator flow and an index
system for vector sparsity.

• Skip both zero weight data and input data to get great
performance.

Fig. 1. Fine grained sparse struc-
ture

Fig. 2. Vector sparse structure

Fig. 3. The proposed system architecture

ar
X

iv
:2

20
5.

02
27

1v
1 

 [
cs

.A
R

] 
 2

 M
ay

 2
02

2



Fig. 4. The PE array architecture

The rest of the paper is organized as following. Section
II shows the overview of our proposed architecture. Section
III gives detailed data flow for dense CNN and vector sparse
CNN. The implementation results and comparison are shown
in section IV. Finally, we conclude in section V.

II. ARCHITECTURE

A. Overview

Fig. 3 shows the proposed system architecture. This design
first gets the input and weight data from external memory and
stores them into the local SRAM buffers for the following
repeated access. These data are fed into the processing element
(PE) array to compute convolution and then accumulated
through the accumulator according to the index. During the
accumulation, these partial sum of the convolution results are
stored in a local SRAM buffer to avoid unnecessary external
memory access until the final accumulated output is generated.
These accumulated output is processed by the post processing
unit for following activation functions, normalization, and zero
detection. The final output which are non-zero vector will be
sent back to external DRAM. The whole process is controlled
by the system controller according to the configuration context.
The data access of input, weight and output are controlled by
their SRAM buffer controllers to sequentially accessing the
data.

B. PE array

The PE array is the main processing core of this proposed
design as shown in Fig. 4 and Fig. 5. Each PE as in Fig. 5
contains one multiplier to multiply input and weight, and adder

Fig. 5. The overview of processing element

Fig. 6. An convolution example with 5x5 input with padding 1 and 3x3
weight to generate 5x5 output

for partial sum accumulation. In this design, the weights are
not stored locally in each PE as in other designs since such
design style is not suitable for sparse computation. Instead, the
input data are broadcasted horizontally and the weight data are
broadcasted vertically to support both dense and vector sparse
computation. The partial results are then propagated diagonally
along the PE array, as shown in Fig. 5 to accumulate in the
same cycle.

The hardware utilization of the PE array depends on how
to map the kernels and inputs to the array and the sparsity of
the network. Since the 3x3 convolution is the most widely
filter in current CNNs, our architecture has optimized the
convolution process for 3x3 filters with the unit stride for full
hardware utilization. Other filter sizes and non-unit strides can
be supported as well by a suitable mapping method [13].

III. DENSE AND SPARSE DATA FLOW

Fig. 7 shows the data flow of the CNN computation with
15 PEs for a 5x5 input with padding 1, and 3x3 filer kernel
example as in Fig. 6. At the first cycle, the first column of the
weight filter, WA1 to WA3, is broadcasted vertically to the PE
array. The corresponding first column of the input activations,
A1 to A5, is also broadcasted horizontally to the PE array.
The vector to vector multiplication results are also summed
together along the diagonal direction at the same cycle to
generate part of the results of OB1 to OB5, as illustrated in
Table. I and Fig. 8. These partial results (e.g. OB1 to OB5 at
t = 1) are stored in the buffer and accumulated with the next



TABLE I
TIMING DIAGRAM

Dense CNN Timing Diagram
Cycle 1 2 3 4 5 6 7 8 9 ...
Input A1-A5 B1-B5 C1-C5 ...

Weight WA1-WA3 WB1-WB3 WC1-WC3 WA1-WA3 WB1-WB3 WC1-WC3 WA1-WA3 WB1-WB3 WC1-WC3 ...
Output OB1-OB5 OA1-OA5 x OC1-OC5 OB1-OB5 OA1-OA5 OD1-OD5 OC1-OC5 OB1-OB5 ...

Sparse CNN Timing Diagram
Cycle 1 2 3 4 5 6 7 8 ...
Input A1-A5 C1-C5 D1-D5 E1-E5 ...

Weight WA1-WA3 WB1-WB3 WA1-WA3 WB1-WB3 WA1-WA3 WB1-WB3 WA1-WA3 WB1-WB3 ...
Output OB1-OB5 OA1-OA5 OC1-OC5 OB1-OB5 OE1-OE5 OD1-OD55 x OE1-E5 ...

partial results with the same index (e.g. OB1 to OB5 at t = 5,
9).

For dense CNN computation as in Fig. 8, each output
will take 3 different cycles for 3x3 filters, and 15 cycles for
5x5 input. For sparse CNN computation, zero input data and
weight data as denoted by the dashed line block will not be in
SRAM, so they will be skipped and not be computed as shown
in Table. I and Fig. 8. Only the nonzero part will be in SRAM
and sent to the PE array and accumulated with the same index
system. Thus, the computation cycles are reduced (e.g. t=3, 4,
5, 6 and 9 in Fig. 8) while still keep the computation regular.
As result, we only need 8 cycles for this sparse CNN, saving
47% of cycles.

IV. EXPERIMENTAL RESULT

The proposed architecture has been implemented and sim-
ulated with the VGG-16 model pretrained on the ImageNet
dataset and pruned with the vector pruning method as [18]. The
accuracy only drop 0.08% with density 23.5%. The PE number
used in the simulation is 168, arranged in two configurations:
[4, 14, 3] 4 PE arrays, and 14 rows and 3 columns per PE
array, [8, 7, 3] 8 PE arrays, and 7 row and 3columns per
PE array. Such configurations are chosen to maximize the
hardware utilization for above VGG-16 model execution. With
above configuration, the input activation vector size is set to

Fig. 7. Illustration of data flow (dashed line block represents all zero vector
in sparse CNN)

14 or 7. Following output zero detection in post processing
element and weight pruning, Fig. 9 and Fig. 10 shows the
nonzero data density of input activation and weight for fine
grained sparsity and vector sparsity, respectively. As expected,
the fine grained sparsity has lower density than that in the
vector sparsity case.

The speedup results of the proposed design are shown in
Fig. 12 and Fig. 13. When compared with the dense CNN
computation, we can achieve 1.871X and 1.93X speedup for
[4, 14, 3] and [8, 7, 3] cases, respectively. Small number of PE
rows in the [8, 7, 3] case results in more zero vectors to skip,
and thus higher speedup, but the difference is small. The zero
computation that this design can skip is 92% ([4, 14, 3] case)
and 85% ([8, 7, 3]) compared to their respective ideal vector
sparse computation, and 46.6% ([4, 14, 3] case) and 47.1%
([8, 7, 3]) compared to the ideal fine grained computation. Our
design is efficient to exploit almost all zero vectors. Small zero
vector enables more zero skipping.

When compared to the fine grained design in [16], our
design overhead is very small compared to the complex index,
accumulator and routing in [16]. The speedup over the dense
CNN in [16] is about 3X, which roughly exploits 66% of ideal
fine grained zero computation. In comparison, our design can
exploits 47% in average of ideal fine grained zero computation
to achieve 1.93X speedup with small area overhead. Our
design is more hardware efficient than the previous design.

V. CONCLUSION

This paper proposes a CNN hardware accelerator that can
support dense CNN and vector sparse CNN incurring small
area overhead with broadcasted 1-D input activation vector
and 1-D weight vector data flow. This design can achieve
1.93X speedup over the dense CNN computation by exploiting
around 90% of the ideal zero vector computation.

ACKNOWLEDGMENT

This work was supported by Ministry of Science and
Technology, Taiwan, under Grant 108-2634-F-009 -005, 107-
2119-M-009-019, and Research of Excellence program 106-
2633-E-009-001.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ”Imagenet classification
with deep convolutional neural networks,” in Proc. NIPS, 2012, pp.
1097-1105.



Fig. 8. Dataflow chart for dense and sparse CNN computation in Fig. 8, where the dashed line blocks will be skipped at the sparse CNN case. In each block,
the element with the same color will be summed together in a PE. OA0, OA6, OB0, OB6, . . . are for zero padding boundary computation. t* represents
cycles for sparse CNN.

Fig. 9. Density ratio of input and weight and work with fine grained sparse

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al.,
”Going deeper with convolutions,” in Proc. IEEE CVPR, 2015, pp. 1-9.

[3] K. Simonyan and A. Zisserman, ”Very deep convolutional networks for
large-scale image recognition,” CoRR, 2014..

[4] K. He, X. Zhang, S. Ren, and J. Sun, ”Deep residual learning for image
recognition,” in Proc. IEEE CVPR, 2016.

[5] S. Ji, W. Xu, M. Yang, and K. Yu, ”3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, pp. 221- 231, 2013.

[6] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y.
LeCun, ”Overfeat: integrated recognition, localization and detection
using convolutional networks,” in Proc. ICLR, 2014.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierar-
chies for accurate object detection nd semantic segmentation,” in Proc.
IEEE CVPR, 014, pp. 580-587.

[8] T. He, W. Huang, Y. Qiao, and J. Yao, ”Textattentional onvolutional
neural network for scene text etection,” IEEE Trans. Image Process.,
vol. 25, pp. 529-2541, 2016.

[9] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, ”A onvolutional neural
network cascade for face etection,” in Proc. IEEE CVPR, 2015, pp.
5325-5334.

[10] Tomè, F. Monti, L. Baroffio, L. Bondi, M. Tagliasacchi, and S. Tubaro,
”Deep convolutional neural networks for pedestrian detection,” Signal

Fig. 10. Density ratio of input and weight and work with PE array 4 blocks,
14 rows, 3 columns

Fig. 11. Density ratio of input and weight and work with PE array 8 blocks,
7 rows, 3 columns



Fig. 12. Speedup of our work and ideal vector sparse and fine grained sparse
network with PE array 4 blocks, 14 rows, 3 columns.

Fig. 13. Speedup of our work and ideal vector sparse and fine grained sparse
network with PE array 8 blocks, 7 rows, 3 columns.

Processing: Image Communication, 2016.
[11] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An Energy-

Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” in IEEE ISSCC, 2016

[12] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei, “Deep con-
volutional neural network architecture with reconfigurable computation
patterns,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 8, pp. 2220–2233, 2017

[13] Y.-J. Lin and T. S. Chang, “Data and hardware efficient design for
convolutional neural network,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 65, no. 5, pp. 1642–1651, May 2018.

[14] S. Liu et al., “Cambricon: An instruction set architecture for neural
networks,” in Proc. ISCA, 2016.

[15] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural net-
works,” in Proc. Annu. Int. Symp. Microarchitecture (MICRO), Oct.
2016, pp. 1–12.

[16] A. Parashar, et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. ISCA, 2017, pp. 27–40.

[17] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding,” in ICLR, 2016.

[18] H. Mao, et al., “Exploring the regularity of sparse structure in convolu-
tional neural networks,” in Proc. CVPR Workshop Tensor Methods In
Comput. Vis., 2017.


	I Introduction
	II Architecture
	II-A Overview
	II-B PE array

	III Dense and Sparse Data Flow
	IV Experimental Result
	V Conclusion
	References

