
Modular PUF Coding Chain
with High-Speed Reed-Muller Decoder

Holger Mandry*, Andreas Herkle*, Ludwig Kürzinger†, Sven Müelich?,
Joachim Becker*, Robert F.H. Fischer? and Maurits Ortmanns*

*Institute of Microelectronics, ?Institute of Communications Engineering, Ulm University,
Albert-Einstein-Allee 43, Ulm, Germany, holger.mandry@uni-ulm.de

†Institute for Human-Machine Communication, Technical University Munich, Germany, ludwig.kuerzinger@tum.de

Abstract—Physical Unclonable Functions (PUFs) offer the
possibility to produce unique fingerprints for integrated cir-
cuits. As raw PUF responses are affected by noise, some post-
processing steps are necessary. We present a coding chain test
framework for PUFs on Field Programmable Gate Arrays. The
framework allows easy exchange, evaluation and comparison
of different PUF implementations, coding algorithms and other
chain modules. For a testing framework, the execution time of
the evaluated algorithm is a bottleneck, since a huge amount of
runs are supposed to be done. Hence, we additionally present a
new type of Reed-Muller decoder hardware architecture using
parallel modules to speed up the decoding process. The decoding
time could be decreased by 95 % in comparison to existing
implementations at the cost of 41 times higher slice count.

Index Terms—Physical Unclonable Function (PUF), FPGA,
generalized concatenated codes, Reed-Muller

I. INTRODUCTION

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution

to servers or lists, or reuse of any copyrighted component of this work in other works.

With the increasing spread of Internet-Of-Things (IoT)
based devices during the last years additional gateways to
the infiltration of personal privacy were opened. Therefore
authentication and secure communication became a more rel-
evant issue and hardware embedded security got a significant
boost. Especially in hardware cryptography, secret keys are
required, which should neither be accessible nor modifiable
as they can not be exchanged in-field. So called Physical
Unclonable Functions (PUFs) offer the ability to generate in-
dividual fingerprints of hardware components without storing
them. PUFs utilize small manufacturing variations to produce
unpredictable but repeatable responses to a given challenge,
which usually are bitstrings of given length. Additionally,
PUFs are easy to evaluate and hard to characterize [1]. This
means, that a response must be created very fast and it should
be impossible to calculate the function with a given number
of known challenge-response-pairs.

For Field Programmable Gate Arrays (FPGAs), different
implementations have been proposed, e.g. the ringoscillator
(RO) PUF, which was proven to be the best implementation
regarding noise immunity so far [2]. Environmental influences
can affect the reproducibility [3] of PUFs such that their
response might be altered over multiple measurements. Several
PUF specific error correcting techniques have already been
published [4], [5], [6], [7] to correct for this. However, only
very few publications take a whole system implementation into
consideration.

Therefore, we present a modular test framework for FPGAs
to allow the comparison of existing and new PUF FPGA
implementations and algorithms as a whole. In the framework,
the creation of a PUF response and post-processing like source
coding and error correction are combined to a chain-like
structure. A modular approach allows an easy exchange of
specific modules and their evaluation without the need to
adapt the remaining system. An additional Central Processing
Unit (CPU) is available that allows to analyze and debug
intermediate steps of the processing.

The complete PUF coding chain is described in sec. II. Dif-
ferent recursive Reed-Muller (RM) decoder implementations
are presented and a new one proposed in sec. III, serving as
examples of interchangeable modules-under-test. In sec. IV,
we compare these to an existing decoder [7] and highlight the
tradeoffs regarding processing time and area consumption on
the FPGA. Section V finally concludes the paper.

II. MODULAR PUF CODING CHAIN

Error
Correction

Source
Coding

Readout

CPU

PUF
Source

Data

FPGA

Data Data Data DataApplicationData

Fig. 1: Modules of the coding chain.

In most cases a raw PUF response from the original source
of randomness needs some post-processing steps to be usable
by an application. A full PUF coding chain was presented as
PUFKY [5], where the RO PUF responses were encoded with
a Lehmer-Gray Code followed by error correction using secure
sketch and stored helper data. PUFKY was kept modular
to allow quick adaptations to surrounding circuits using a
bus interface. Even though, the design itself is compact and
highly optimized for its specific application, unfortunately
this advantage also makes testing of different algorithms a
challenging task as all systems modules and connections have
to be adapted. In order to tackle this gap in the state of the art
and to be able to test various PUF sources with various coding
algorithms, we designed a flexible and modular framework
for testing on FPGAs. The test-framework is divided into the

following sub-modules: PUF-Source, readout, source coding,
error correction and application, as illustrated in Fig. 1.
Each module has a defined and mostly similar interface to
the previous and following one, which allows the modules
to interchange data via a defined and module independent
handshake protocol. This generic setup makes it possible
to exchange the algorithms of each module while leaving
the remaining system untouched and even allows additional
modules to be integrated as indicated in the grayish box in
Fig. 1.

The platform we used is the System-on-Chip (SoC) Xil-
inx ZYNQ 7000 XC7Z010. Every module is bidirectionally
connected to the CPU not only for debugging and analysis:
by replacing a module with a redirect placeholder, its func-
tionality can be provided by a software function running on
the CPU, thus speeding up prototyping and hardware-software
co-design. Obviously this offends against the principle of a
secure system, where no secret information can leave the
circuit, however our system is designed as a test platform to
compare and evaluate different algorithms before an isolated
and dedicated system is designed.

The first module of the PUF coding chain is the PUF-Source
itself, which contains the physical components generating the
random signals. On FPGAs this components are mostly flip
flops (FFs) and look-up tables (LUTs) that provide boolean
functions. In our exemplary implementation, 80 ROs were
placed. The next adjacent module readout is responsible to
process the PUF signals and convert them into digital values.
Our example entity uses DSP48 based counters, which count
the number of rising clock edges in a given time interval. A bit
is then generated in the source coding module by 2nd order
quantization [8]: two selected counter values are subtracted
from each other, giving a bit value of 0 if the result is positive
and a bit value of 1 if negative. These digital values can
further be compressed and mapped to codewords. To remove
the influence of circuit noise and other non-idealities of the
reproducibility of the response, the subsequent module applies
error correction. In our exemplary implementation, a fuzzy
extractor with generalized concatenated codes as described
in [6] is used. By using the helper data and the corrected
key, which has an error probability of 1.49 · 10−9 [9], it is
possible to restore the original PUF response. For this decod-
ing algorithm, an implementation for low-area constraints was
published [7]. With the help of our framework, we further
explore the parameter space of speed and area and present
our different implementations in-depth in sec. III. After the
error correction some additional modules can be inserted, e.g.
for privacy amplification or a hash function which are not
explicitly shown in Fig. 1 and their discussion is omitted in
the following. As a last step in the coding chain the application
module can use the post-processed PUF response.

III. VARIOUS TYPES OF A PLOTKIN REED-MULLER
DECODER

Reed-Muller codes are a class of codes suited for PUF bit
error correction as decoding is easily implementable [6]. In

this section, we will show how Reed-Muller (RM) codes, in
the following called super-codes, are constructed from sub-
codes via the Plotkin construction. We will show how this
approach perfectly fits the requirement for parallel instan-
tiation in FPGAs, and present one stacked based and two
new recursive implementations of a decoder in hardware and
highlight their benefits and trade-offs.
RM(r,m) codes are characterized by the two parameters

m > 0 and 0 ≤ r < m. The length of the created binary linear
code is n = 2m. With the Plotkin construction it is possible
to create a super-code out of the sub-codes [10] as follows:

RM(r,m) = {(u|u⊕ v) :u ∈ RM(r,m-1),

v ∈ RM(r-1,m-1)} (1)

RM codes with r = 0 are repetition codes and with r =
m− 1 are parity-check codes, which are both easy to decode.
This recursive code construction allows it to see RM codes
as generalized concatenated codes [11]. In order to decode a
codeword y and correct errors e, three recursiveRM decoding
steps have to be made as shown in Algorithm 1 [9].

Algorithm 1 Recursive RM(r,m) Decoder

Input: y = (yu|yv) = (u⊕ eu|u⊕ v ⊕ ev)
1: v̂ = decode ṽ = yu ⊕ yv in RM(r-1,m-1)
2: û1 = decode ũ1 = yv ⊕ v̂ in RM(r,m-1)
3: û2 = decode ũ2 = yu in RM(r,m-1)
4: Find i ∈ {1, 2} so that Hamming distance
dH(y, (ûi|ûi ⊕ v̂)) is minimal

5: return (ûi|ûi ⊕ v̂)

Recursive functions are very easy to implement in software.
The main challenges for recursive algorithms in hardware
are the unknown depth of recursion as well as the different
length of resulting codewords. This makes it very hard to
develop an efficient general hardware setup. Nevertheless we
designed three different variants of the Plotkin RM decoder
in hardware which are explained in the following.

a) Fully Recursive Decoder: The approach of the fully
recursive decoder is to decode all three sub-codewords in
parallel. The Steps 1 and 3 of Algorithm 1 only depend
on the input y and can start immediately. Step 2 needs the
result v̂ from Step 1 but is completely independent of Step 3,
thus Step 2 and 3 can also run in parallel. Consequently,
the fully recursive decoder consists of many sub-decoders
that are instantiated recursively. Depending of the value of
r and m, either a repetition decoder, a parity-check decoder
or a combination module with individual bit width is created.
A combination module instantiates three additional recursive
decoders with r and m of the required sub-codes and combines
their corrected sub-codewords v̂, û1 and û2. ũ1 and ũ2 are
decoded with one set of sub-decoders each to allow real
parallel decoding. Because the bit width of each sub-module is
known, the combination can be done by wiring and no shifting
is necessary. However this setup requires many hardware com-
ponents as a huge amount of adapted decoders are instantiated.

b) Stack Decoder: The stack based decoder uses Block-
RAMs (BRAMs) to save data in a last in, first out queue, which
is called stack. If the current r and m values do not correspond
to repetition or parity-check codes, all current values and
intermediate results are saved on the stack. Next new sub-
codeword and r, m values are calculated as described in
Algorithm 1. Then the sub-code can start to decode. After the
combination of all three results, the stack pointer is decreased
so that the super-code can continue its decoding. RM(0,m)
and RM(m-1,m) codes are decoded by specific repetition
and parity-check decoders. When the stack pointer is zero
again, the decoding process is finished. Due to the fact, that
the bit width of the codewords depends on the parameter m
the sub-codewords have to be shifted before combination. A
simple wiring solution is not possible since all occurring bit
widths are handled on the same hardware components. This
needs extra time, which increases with m. Additionally, the
three decoding steps must be calculated in series. Furthermore,
loading and storing of intermediate results from and into
BRAMs needs extra time.

c) Serial Recursive Decoder: The serial recursive de-
coder is a hybrid of serial and parallel decoding. As the
decoding Step 2 can not start until Step 1 is finished, we
decode ũ1 and ũ2 in series on the same hardware. Steps 3
and 1 run in parallel as in the fully recursive decoder to
keep the time benefit. The serial decoding of ũi allows us
to reduce the used amounts of hardware components. In the
fully recursive decoder two identical sub-decoder sets for ũ1
and ũ2 exist. By using serial decoding, it is possible to save
one complete set of sub-decoders, which should decrease the
required area significantly.

IV. COMPARISON OF THE DIFFERENT DECODERS

In this section, we analyze the quality of these three different
types of decoders by means of decoding time and required area
on the FPGA.

a) Decoding Time: To analyze the decoding time ∆t for
one RM decoding, all three decoders had to decode the same
test sequences. This was done for all possible RM codes
with m ∈ {1, . . . , 7}. Fig. 2 shows exemplarily the decoding
time ∆t for m = 5 and increasing r. As can be seen, the

Fig. 2: Average calculation time ∆t of all three RM decoders
with m = 5 over r.

decoding time ∆t for r = 0 and r = 4 are very similar.
This is an expected behavior as for both r, only repetition and
parity-check codes are directly used. The stack based variation
just needs some more clock cycles because it has to load the
corresponding bit widths beforehand.

For the other RM codes, the difference in decoding time
between stack and recursive decoders is significantly larger.
Here, many sub-decoding steps have to be calculated, which
the stack decoder can not run in parallel. Additionally, it needs
time to load and store values to the BRAMs for each decoding
step and the shift operations take more time.

If we compare the decoding time of RM(1, 5) with
RM(3, 5), we can see that the RM(1, 5) needs a lot longer
using the stack decoder. This can be explained since the
amount of sub-steps in RM(r,m-1) is higher than the amount
of sub-steps in RM(r-1,m-1). Due to the fact that ũ1 and
ũ2 both are decoded in RM(r,m-1), the bare amount of
decoding steps is a lot bigger. Therefore super-codes with low
r need more time compared to super-codes with the same
amount of sub-codes but bigger r. This performance is also
noticeable for the serial recursive decoder.

Only for the fully recursive decoder, the amount of decoding
steps in the RM(r,m-1) does not impact the execution time,
because they are calculated in parallel. Therefore, decoding of
super-codes with different r and same amount of sub-codes,
as e.g. RM(1, 5) and RM(3, 5), need the same time.

(a)

(b)

Fig. 3: Required LUTs and FFs of all three RM decoders
with m = 5 (a), m = 7 (b) over r.

b) Area: The second criteria for the applicability of
a decoder, especially on a resource limited device, is the
amount of required hardware components, particularly LUTs
and FFs. Fig. 3 shows the synthesis results of all different
RM decoders with m ∈ {5, 7} and r ∈ {0, . . . ,m-1}.

The stack decoder requires the same amount of components
for all possible values of r, because an increasing r has no
influence on the bit width. Conversely, the recursive decoders’
area consumption always depends on r. For m ≤ 5, the stack
decoder needs more components than the recursive decoders
but this relation begins to change for m = 7.

c) Time vs Area: In Fig. 4, the relation of area vs time
is plotted on a logarithmic scale for the three analyzed im-
plementation variants, as well as the low area implementation
from [7] and a comparison to a CPU implementation. The low
area decoder works on the error correcting principle described
in [6] as well but uses Reed decoding. Reed decoding is a very
memory and therefore area efficient strategy to decode RM
codes [12]. Apart from that it is very time-consuming as every
bit is calculated separately. For the CPU implementation, a
bare metal C code with 50.6 kB code size was written. This
software algorithm is rather slow since a CPU is not adapted
to a specific task. On the other hand it requires only few FPGA
components to access the readout values.

As can bee seen, there is a clear trade-off between area
and speed for recursive implementations, which follows a
regression curve, whereby area consumption and decoding
time are linked exponentially. The stack based variant is
always outperformed by the recursive variants. Although it
seems that the stack decoder is a bad choice, one have to
keep in mind that it can also decode all RM(r′,m′) codes
with m′ ≤ m, while the recursive variants are bound to a
specific RM(r,m).

Fig. 4: Calculation time vs required area with logarithmic scale
on both axes for RM(1, 7) (blue) and RM(4, 7) (red).

Table I lists all criteria of all implementations for a complete
error correction, which consists of one RM(4, 7) and four
RM(1, 7) decoding steps [7]. The fully recursive decoder is
20.7 times faster than the low area decoder from [7], which is
the slowest variant. On the other hand, it consumes 59.2 times
more components of the FPGA. The serial recursive decoder
only requires 25.6 times more components and is still 10.9
times faster. It only needs 1.2 times more components than
the stack decoder and is 2.3 times faster. In conclusion, the

serial recursive decoders has a very good trade-off between
area and speed for fixed RM(r,m) codes.

Especially, for a testing platform as the one presented,
execution time of the error correction is highly needed, since
trillions of readouts are supposed to be done for code and BER
testing. With a clock of 50MHz, the proposed serial recursive
decoder only consumes 169µs per decoding, while the low
area implementation of [7] would need 1840µs. Obviously,
the speed advantage of the proposed algorithm is of utmost
importance for an evaluation setup as proposed.

TABLE I: Required FPGA components and calculation time
for used error correction.

stack fully rec. serial rec. low Area
LUTs RM(1, 7) 3256 4468 1388 184
LUTs RM(4, 7) - 4258 2578 -

LUTs total 3256 8726 3966 184
FFs RM(1, 7) 2950 4072 1068 106
FFs RM(4, 7) - 4378 2411 -

FFs total 2950 8450 3479 106
componentsa 6206 17176 7445 290
slices totalb 982 3011 1338 73

∆t (clock cycles)
RM(1, 7) 4054 794 1786 10500
RM(4, 7) 3955 1266 1290 50000

total 20171 4442 8434 92000
aafter synthesis
bafter implementation

V. CONCLUSION

A modular and easily adaptable test framework for creation
and post-processing of PUF responses is presented, in which
sub-modules can easily be exchanged for testing and com-
paring of different implementations both in hardware and in
software. A connection to the CPU on the same chip was
used to analyze intermediate results like bit-error calculation
and efficiency testing of error-correction algorithms.

Based on this framework, we presented implementation
types of Reed-Muller decoders, with our recursive instantiated
decoders representing a new type of hardware setup compared
to existing technologies. We showed that our recursive de-
coders are much faster than stack based ones at the cost of
more area of the FPGA. Additionally, we showed that a serial
decoding of ũi increases the decoding time only a little but
reduces the necessary components significantly, which is the
sweet spot for a time-area trade-off. We showed that the stack
based variant performs slower than its recursive counterparts
yet is the most flexible one as it can also decode RM codes
with smaller m and every valid r. In future work, our test
framework can be used to test additional enhancements of PUF
post processing.

ACKNOWLEDGMENT

This work was funded by the German National Science
Foundation DFG under grant number FI 982/15-1.
We acknowledge Prof. G. Sigl and Dr. M. Hiller from TU
Munich for providing us the Python code of their RM decoder.

REFERENCES

[1] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas.
Silicon physical random functions. In Proceedings of the 9th ACM
conference on Computer and communications security, pages 148–160.
ACM, 2002.

[2] Alexander Wild, Georg T. Becker, and Tim Güneysu. A fair and com-
prehensive large-scale analysis of oscillation-based PUFs for FPGAs.
In 27th International Conference on Field Programmable Logic and
Applications (FPL), 2017, pages 1–7. IEEE, 2017.

[3] Roel Maes. Physically unclonable functions: Constructions, properties
and applications. 2012.

[4] Dominik Merli, Dieter Schuster, Frederic Stumpf, and Georg Sigl.
Side-channel analysis of PUFs and fuzzy extractors. In International
Conference on Trust and Trustworthy Computing, pages 33–47. Springer,
2011.

[5] Roel Maes, Anthony Van Herrewege, and Ingrid Verbauwhede. PUFKY:
A fully functional PUF-based cryptographic key generator. In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems,
pages 302–319. Springer, 2012.

[6] Sven Müelich, Sven Puchinger, Martin Bossert, Matthias Hiller, and
Georg Sigl. Error correction for physical unclonable functions using
generalized concatenated codes. In Fourteenth International Workshop
on Algebraic and Combinatorial Coding Theory September , 2014,
Svetlogorsk (Kaliningrad region), Russia, pages 253–258, 2014.

[7] Matthias Hiller, Ludwig Kürzinger, Georg Sigl, Sven Müelich, Sven
Puchinger, and Martin Bossert. Low-area reed decoding in a generalized
concatenated code construction for PUFs. In IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2015, pages 143–148. IEEE, 2015.

[8] Vincent Immler, Matthias Hiller, Johannes Obermaier, and Georg Sigl.
Take a moment and have some t: Hypothesis testing on raw PUF data.
In IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), 2017, pages 128–129. IEEE, 2017.

[9] Sven Puchinger, Sven Müelich, Martin Bossert, Matthias Hiller, and
Georg Sigl. On error correction for physical unclonable functions. In
SCC 2015; 10th International ITG Conference on Systems, Communi-
cations and Coding; Proceedings of, pages 1–6. VDE, 2015.

[10] Martin Bossert. Einführung in die Nachrichtentechnik. Oldenburg
Verlag, 2012.

[11] Martin Bossert. Kanalcodierung. Oldenburg Verlag, 3. Auflage, 2013.
[12] I. S. Reed. A class of multiple-error-correcting codes and the decoding

scheme. IRE Trans. on Inf. Th., vol. 4, no. 4, pp. 38–49, 1954.

