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Abstract—Hardware acceleration for dilated and transposed
convolution enables real time execution of related tasks like
segmentation, but current designs are specific for these convolu-
tional types or suffer from complex control for reconfigurable
designs. This paper presents a design that decomposes input
or weight for dilated and transposed convolutions respectively
to skip redundant computations and thus executes efficiently on
existing dense CNN hardware as well. The proposed architecture
can cut down 87.8% of the cycle counts to achieve 8.2X speedup
over a naive execution for the ENet case.

Index Terms—Hardware design, convolution neural networks
(CNNs), dilated convolutional neural networks, transposed con-
volutional neural networks, segmentation.

I. INTRODUCTION

Convolution neural networks (CNNs) based image segmen-
tation [7], [8] has been widely used in scene understanding,
medical purposes, and action recognition during recent years
for its significant improvement over traditional approaches.
However, the computation of CNNs requires billions of multi-
plications and accumulations (MACs). Thus, hardware accel-
eration for CNNs is demanded to provide high parallelism for
high throughput to achieve real time execution.

Various hardware accelerators [10]–[15] have been pro-
posed recently. Typical accelerators focus on widely used
convolutions with stride one (e.g. 3×3), called dense CNN in
this paper [10], [11]. [10] adopts a spatial array architecture
and row stationary data flow for classification [1]–[6]. [11]
proposes a systolic array architecture with full reconfigurations
for different convolutional kernels on classification. [15] uses
different hardware units to support CNNs and recurrent neural
networks. For acceleration of segmentation, a typical segmen-
tation consists of dilated and transposed convolutions that have
many zeros at the weight or input as shown in Fig. 1, which
results in sprase CNN and low hardware utilization when
naı̈vely mapped to a typical dense CNN hardware accelerators.
Thus, for accelerators of dilated and transposed convolutions,
[12] proposes an accelerator with delay cells to support dilated
and transposed convolution in the segmentation. [13] provides
a unified systolic array to accelerate different types of convolu-
tion. [14] uses a cascading filter structure to support transposed
convolutions for generative neural networks [9]. However,
most of existing accelerators are tailored for a specific task,
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Fig. 1. The architecture of image segmentation.

which will incur high reconfiguration hardware cost to support
different tasks.

To support dilated and transposed convolutions without high
reconfiguration costs, this paper proposes to decompose input
or weight for dilated and transposed convolutions respectively
such that all these convolutions are reduced to normal dense
CNN and easily executed on existing dense CNN hardware
with no overhead. Applying this flow to a dense CNN design
[16] does not need extra logic and can save 97% and 71% of
cycle count for dilated and transposed convolutions in ENet
[8], respectively.

II. PROPOSED METHOD

A. Overview of Segmentation

Fig. 1 shows the network architecture of segmentation that
consists of an encoder, translation, and decoder. The encoder
is a typical CNN with convolutions layers and pooling layers
to extract high level features. Then these features are further
processed with dilated convolutions that use the enlarged
kernels with zero insertion to keep feature map size unchanged
in the translation part. These feature maps are then upsampled
to generate output with the same size as input with the trans-
posed convolutions in the decoder. The transposed convolution
enlarges input by inserting zeros between the adjacent input
elements and convolves with a normal kernel to generate
enlarged output. Both dilated and transposed convolutions
contain a large number of zero computations. How to skip
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Fig. 2. Weight matrices with different D in dilated convolutions. The size
equal to (2×D + 3)× (2×D + 3).

a1 b1 c1 d1 e1 f1 g1

a2 b2 c2 d2 e2 f2 g2

a3 b3 c3 d3 e3 f3 g3

a4 b4 c4 d4 e4 f4 g4

a5 b5 c5 d5 e5 f5 g5

a6 b6 c6 d6 e6 f6 g6

a7 b7 c7 d7 e7 f7 g7

oa1 ob1 oc1 od1 oe1 of1 og1

oa2 ob2 oc2 od2 oe2 of2 og2

oa3 ob3 oc3 od3 oe3 of3 og3

oa4 ob4 oc4 od4 oe4 of4 og4

oa5 ob5 oc5 od5 oe5 of5 og5

oa6 ob6 oc6 od6 oe6 of6 og6

oa7 ob7 oc7 od7 oe7 of7 og7
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weight of 
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Fig. 3. A dilated convolution example with 7×7 input and dilated weight of
any D to generate 7×7 output. In which, 1 + D zeros are padded around
input to maintain output size the same as input size.

these zero computations without complex control cost is a
challenging task for hardware accelerators.

B. Input Decomposition for Dilated Convolutions

Fig. 2 shows the weight matrices with different dilation
rate D (that is, the different number of inserted zeros that
between the adjacent weight elements). To avoid these zero
computations, we decompose input of dilated convolutions
into (1 + D)2 blocks with inspirations by [18]. Each block
consists of input elements subsampled by D from original
input. Thus, as shown in Fig. 4, the 7×7 input is decomposed
to 4 blocks (4×4, 4×3, 3×4, and 3×3) for D = 1, or 9
blocks (3×3, 3×2, 3×2, 2×3, 2×2, 2×2, 2×3, 2×2, and
2×2) for D = 2. The decomposed input blocks are then
followed by standard convolution (e.g. 3×3 non-zero weights)
to generate independent outputs. This decomposition makes
dilated convolutions with any D into dense convolutions and
thus is suitable for all dense CNN accelerators.

C. Weight Decomposition for Transposed Convolutions

Fig. 5 shows a transposed convolution example that con-
volves an enlarged 7×7 input and 3×3 weight to generate
enlarged output. This convolution consists of a lot of zero
computations, with only four exceptional cases as shown
in Fig. 5. Based on this observations, we can decompose
weight to four cases as shown in Fig. 6. These four cases
are four corners (2×2), two horizontal endpoints (1×2), two
vertical points (2×1), and center (1×1). We decompose weight
matrices to these four blocks for transposed convolutions to
avoid unnecessary zero computations. Thus, the decomposed
weight matrices just needs to multiply with normal input
directly without zero insertion.

a1 b1 c1 d1 e1 f1 g1

a2 b2 c2 d2 e2 f2 g2

a3 b3 c3 d3 e3 f3 g3

a4 b4 c4 d4 e4 f4 g4

a5 b5 c5 d5 e5 f5 g5

a6 b6 c6 d6 e6 f6 g6

a7 b7 c7 d7 e7 f7 g7

a1 b1 c1 d1 e1 f1 g1

a2 b2 c2 D2 e2 f2 g2

a3 b3 c3 d3 e3 f3 g3

a4 b4 c4 d4 e4 f4 g4

a5 b5 c5 d5 e5 f5 g5

a6 b6 c6 d6 e6 f6 g6

a7 b7 c7 d7 e7 f7 g7

D=1 D=2

Fig. 4. The decomposition for dilated convolutions. Input are decomposed
to 4 and 9 blocks (denoted with different colors) at D = 1 and D = 2,
respectively. The input elements with the same color are in the same block.
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Inserting zeros
between the adjacent input

Weight
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oa4 ob4 oc4 od4 oe4

oa5 ob5 oc5 od5 oe5

Fig. 5. A transposed convolution example with 3×3 input and 3×3 to
generate enlarged 5×5 output by inserting zeros between the adjacent input.
Only four kinds of nonzero computations exists as denoted with different
color squares.

D. Architecture

The proposed method decomposes dilated and transposed
convolutions into several dense normal CNN, which can be
executed on a dense CNN hardware. For evaluation purpose,
we apply this method to our previous proposed dense CNN
architecture as shown in Fig. 7 [16] that illustrates a n×3 MAC
array design of one PE block. This design is a typical systolic
array type. The PE block has n inputs in the same input
column vector broadcasted horizontally, three weights in the
same weight column vector broadcasted vertically to optimized
for 3×3 convolutions, and partial multiplication summed along
diagonal direction. Finally, the partial sums from PE block will
be accumulated to generate output in accumulator.

Fig. 8 shows operations of dilated convolutions on this
architecture. The input column vectors in each input block
will be broadcasted horizontally and the corresponding weight
column vectors will be broadcasted vertically and sequentially.
For boundary case, to avoid unnecessary computations due to
the zero paddings at the boundary, only two weight column
vectors (e.g. wb, wc or wa, wb) are multiplied with input
boundary vectors (e.g. a, g, b, and f in D = 1 and a, g, b,
e, c, and f in D = 2). For other non-boundary input, three
weight vectors are multiplied with these input vectors (e.g. c,
e, and d in D = 1 and d in D = 2). The final output will be
stitched together by writing the output to the target address.

Fig. 9 shows the data flow of transposed convolutions to



wa1 wc1

wa3 wc3
wa2 wc2

wb1

wb3
wb2

1. 2. 3. 4.

Fig. 6. The decomposition for transposed convolutions. 3×3 weight matrices
are decomposed to four blocks.
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Fig. 7. The architecture of the PE block. In which, input column vectors and
weight column vectors are broadcasted to a n × 3 MAC array to generate
partial sum or output data to accumulator. [16]

compute an example as in Fig. 5. For clarity of explanation,
we assume 3 blocks with 3×3 PEs in each block for Fig. 9.
Thus, the problem is how to schedule the decomposed weight
as in Fig. 6 to the architecture as in Fig. 7. Since we have
nine input ports for weight (3 blocks with 3×3 PEs), one way
is to assign all these nine weights in Fig. 6 to these nine input
ports. In this assignment, we will assign weights that needs the
same input since each 3×3 PE block shares the same input.
Thus, the weight assignments will be as shown in Fig. 9. For
this 3×3 input case, it will need three cycles to complete the
convolution. In which, the idle blocks at these three cycles are
due to the boundary case for this small input.

III. EXPERIMENTAL RESULT

The proposed architecture has been implemented with the
TSMC 40nm CMOS technology at 500MHz and simulated
with the ENet [8] model trained on the Cityscapes dataset
[17] that is resized to 512×512 as our test case.

A. Speedup

Fig. 10 shows the performance enhancement with the pro-
posed method on ENet. Our work can cut down 87.8% of the
operations by skipping zero computation. The overall speedup
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Fig. 8. Operations of each input column vector and corresponding weight
column vectors in different D dilated convolutions.
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Fig. 9. Dataflow chart for the example in Fig. 5 with 3 blocks×3×3 MACs.
In which, the same color elements belong to the same output.

over the ideal dense case can reach up to 8.2X. The ideal
dense case computes all convolutions (disregarding zero or
not) without considering underlying architecture constraints,
which is equivalent to all multiplications and accumulations
needed in the convolution. In above speedup, the cycle count
of dilated convolutions has been reduced from 85% to only
2% (about 42.5X speedup) due to abundant zero computation
saving. A detailed analysis shown in Fig. 11 displayed the
trend of higher speedup for larger dilated rate. Fig. 11 also
shows the comparison to the ideal sparse case (only compute
the nonzero elements). The presented approach has reached
over 83% to 98% efficiency compared to the ideal sparse case.
The efficiency loss is due to the zero paddings, which has more
padded zeros for larger D at the top and bottom of input. The
cycle count of transposed convolutions has been reduced from
7% to only 2% (3.5X speedup). A detailed analysis shown
in Fig. 12 displays our results very close to the ideal sparse
case (up to 99%). The marginal loss is due to the tiled input.
However, the cycle counts (9%) of general convolutions in our
work is a little higher than the ideal dense case (8%) because
utilization of our work is not full in the general convolutions.
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Fig. 10. The performance enhancement for our work on ENet [8]. The
baseline is cycle counts on the ideal dense case. The number of MACs are
the same in our work and the ideal dense case.
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Fig. 11. The performance of dilated convolutional layers on ENet [8]. Dilated
L1, L2, L3, and L4 represent dilated rate D are 1, 3, 7, and 15, respectively.

B. Implementation and Comparison to Other Designs

Table. I shows the implementation result and comparison
with other designs dedicated to segmentation [12], [13]. The
peak throughput is 168 GOPS for computing all the operations
including zeros. With zero skipping, the throughput for ENet
is 1377 GOPS. Our work also has much lower area cost
than other designs dedicated for segmentation due to the
simpler PE structure and controller. The area efficiency is 881
GOPS/mm2 for segmentation, which is up to 5.79X higher
than [12]. The power efficiency can reach up to 8.88 TOPS/W
for segmentation which is 1.13X and 4.77X higher than [12]
and [13], respectively. The power efficiency of [12] for dense
CNN computation is higher than our work because of its lower
bitwidth hardware to attain lower power consumption.

IV. CONCLUSION

This paper proposes hardware efficient execution for dilated
and transposed convolutions that decompose input or weight
matrices to convert these sparse computations into dense
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Fig. 12. The performance of transposed convolutional layers on ENet [8].
Transposed L1, L2, and L3 represent different input size are 128, 256, and
512, respectively

TABLE I
IMPLEMENTATION RESULT AND COMPARISONS WITH OTHER DESIGNS.

Our work [12] [13]
Technology 40nm 65nm 28nm
Measurements Post-layout Post-layout Synthesis
Precision 16 fixed 8 -
On-chip SRAM (KB) 191 220.5 114.7
Frequency (MHz) 500 200 1449
Throughput
(GOPS)a

168d/ 1377e 96d / 639e 374
168bd/ 1377be 156bd/ 1039be 261bd

Supply Voltage (V) 0.99 1.2 -
Core Area (mm2) 1.5625 6.8 -
Core Power (mW) 155 196 201.1
Area
efficiency(GOPS/mm2)

107d / 881e 14d / 94e -
107bd / 881be 23bd / 152be -

Power efficiency
(TOPS/W)

1.08d / 8.88e 0.49d / 3.26e 1.86d

1.08cd / 8.88ce 1.16cd/ 7.79ce -
a1 GMACS= 2 GOPS
bTechnology scaling (

process

40nm
)

cNormalized power efficiency = power efficiency×(
process

40nm
)× (

V oltage

0.99V
)2.

dThe peak throughput for computing all the operations including zeros.
eThe logical throughput with zero skipping on ENet [8] [12].

computations. This dense computation form can be executed
on a general dense CNN without extra controller overhead.
Our work can cut down 87.8% of the cycle count and 8.2X
speedup over the ideal dense case. The area efficiency is up
to 5.79X higher and the power efficiency is up to 4.77X than
other designs for segmentation.
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