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Abstract—Deep convolutional neural networks have recently
emerged as a state-of-the art tool in detection of seizures.
Such models offer the ability to extract complex nonlinear
representations of an electroencephalogram (EEG) signal which
can improve accuracy over methods relying on hand-crafted fea-
tures. However, neural networks are susceptible to confounding
artifacts commonly present in EEG signals and are notoriously
difficult to interpret. In this work, we present a neural-network
based algorithm for seizure detection which leverages recent
advances in information theory to construct a signal representa-
tion containing the minimal amount of information necessary to
discriminate between seizure and normal brain activity. We show
our approach automatically learns representations that ignore
common signal artifacts and which encode medically relevant
information from the raw signal.

I. INTRODUCTION

Epilepsy is a common neurological disorder affecting over
65 million people worldwide'. Epilepsy is characterized by
chronic seizures which typically range in duration from a
few seconds to several minutes and may induce loss of
memory or consciousness [1]. While a variety of treatment
options exist, they are not effective in a substantial fraction of
patients [1], [2]. In such cases, one avenue to reduce mortality
risk and improve quality of life is real-time monitoring by
wearable devices which can detect seizure events and issue
a warning to caregivers. Such devices continuously gather
electroencephalogram (EEG) readings from patients and apply
a signal processing algorithm in an attempt to classify a
reading as corresponding to a seizure or normal brain activity.

Substantial research attention has been devoted both to the
engineering problem of designing such devices and the al-
gorithmic problem of developing signal processing algorithms
capable of reliably detecting seizure events [3]-[6]. Prior work
on detection algorithms generally falls into two categories:
algorithms which use domain expertise to hand select “fea-
tures” to extract from signals, and methods which attempt to
automatically extract a good representation of the raw signal.
In the former category, the literature has proposed a wide
variety of features such as various entropy measures [7]—[9]
and features of the power spectral density [10], [11]. Feature
extraction based algorithms may be desirable because they can
explicitly take advantage of established medical research when
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constructing features and may thus generally be considered
more “biologically plausible” or “interpretable.” On the other
hand, feature extraction typically discards information from
the signal which may be relevant for prediction. Accordingly,
there has been growing research interest in methods which
automatically extract a “good” representation of the raw signal.

For instance, [12] proposed a method based on the
Karhunen-Loéve Transform (KLT) that represents the raw
signal in an alternate basis where classification based on a
similarity search can be efficiently performed without the
need for feature extraction. More recently, there has been
growing interest in the use of deep neural networks (DNN5s)
for seizure detection and EEG processing more generally [13]-
[15]. DNNs are particularly appealing because they can learn
a very rich space of transformations to the raw signal and
are excellent for capturing “hierarchical features” which are
composed of motifs occurring at different resolutions [16].
Our focus in this work is on neural network based methods
for detection.

While neural networks are a powerful class of models, they
suffer from a number of shortcomings which complicate their
application to seizure detection. In particular, EEG recordings
are typically noisy and include numerous artifacts, such as eye
blinks or short changes in visual attention, which perturb the
raw signal but may be unrelated to the outcome of interest (e.g.
presence or absence of a seizure) [15]. The presence of nui-
sances can increase the number of training examples required
to learn model parameters, and complicates interpretation of
the signal representation since it may incorporate both relevant
and irrelevant aspects of the signal [17]. Artifact removal has
been extensively studied in the literature and is regarded as
an essential step in the analysis pipeline [18], [19]. However,
these procedures generally must be applied as pre-processing
steps which complicates analysis and risks discarding useful
information from the signal along with artifacts.

Interpreting the signal representation extracted by a DNN is
challenging since the internal representation is a complex non-
convex function of the raw signal values. While interpretability
of DNN models has emerged as an important topic of research
in the general machine learning community in recent years,
relatively little work has addressed this issue to date in the
context of seizure detection. Prior work in [15], [20] demon-
strated that convolutional neural networks encode frequency
domain information from the raw signal, which is well known



to be medically significant [21]. However, their analysis is
restricted to networks used to classify gestures from EEG and
relies on computing pairwise correlations between frequency
domain features and output activations of convolution filters.
In this work we present a deep-learning-based algorithm for
seizure detection which mitigates the issues discussed above.
We leverage recent advances in probabilistic interpretations
of deep learning models to construct a minimally sufficient
representation of the signal for discriminating between seizure
and normal brain activity. Building on recent work in the
Information Theory community, we demonstrate that this
formulation automatically learns to ignore irrelevant signal
artifacts eliminating the need for artifact removal during pre-
processing. Furthermore, we analyze the latent representations
learned by our approach and demonstrate they encode signal
features known from medical research to be relevant for
seizure detection. We emphasize that our goal in this work is
not to improve on state-of-the-art accuracy for seizure detec-
tion. Rather, we wish to illustrate that adopting an information
theoretic perspective on the problem provides advantages over
conventional approaches without sacrificing accuracy.

II. PROBLEM STATEMENT AND SOLUTION
A. Notation

Bold uppercase symbols denote matrices while bold lowercase
symbols denote vectors. Standard font uppercase symbols
denote random variables and standard font lowercase symbols
denote scalars. We denote the EEG recording for a patient
by {(x¢,y¢))}]_, where t indexes samples (time), T is the
total number of samples, x; € R* is the raw k channel EEG
recording, and y; € {0,1} is a binary variable equal to one
if time ¢ corresponds to a seizure. The y; values are obtained
by hand annotation by an expert but may be subject to some
degree of imprecision (up to a few seconds). As is common
in EEG analysis [13]-[15], we group individual EEG samples
into short time windows of length [ denoted {(X.,%w)}V_;
where W = [1] and X,, € R™**. We declare y,, = 1 if any
x; € X, corresponds to a seizure. We denote by p(X,Y) the
joint distribution over X,, and y,,.

B. Problem Statement

As noted above, a significant issue in analysis of EEG signals
is the presence of artifacts which confound the signal. We
therefore seek a representation z,, € R* for X,, that preserves
only the information in X,, which is relevant for discriminat-
ing between seizure and normal brain activity. This problem
is known as the “Information Bottleneck” and can be written
formally as [22]-[24]:

max I(Z;Y)st. I(Z; X)<$ 1
123 Y) st 1(Z; X) m

which leads to the following Lagrangian:
Lis(p(2]X)) = I(Z;Y) = I(Z; X) (2)

Where I(A; B) denotes the mutual information between ran-
dom variables A and B.
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Fig. 1. Variational Information Bottleneck Network Architecture

We may think of the IB problem as a two stage process:
a representation (or “codeword”) z is sampled from an en-
coder distribution p(Z|X) over which the maximization is
performed, and an outcome ¢ is sampled from a corresponding
“decoder” distribution p(Y'|Z) [22].

C. Variational Bound

Unfortunately, computing: [(X;Z) and I(Z;Y) is - in gen-
eral - computationally intractable, and 2 can only be solved
exactly in the case that X, Y are discrete or jointly Gaussian
[24]. However, Equation 2 can be estimated empirically from
sample data by minimizing the following variational upper
bound [24]-[26]:

A 1
Lip < Lip(0,0) = W Z]Equ[* log qo(yn | 2n)] (3)

+ BDk1(9s(Z]xn) [[P(2))

Where Dy (q||p) is the Kullback-Leibler (KL) divergence
between p and ¢q. This formulation is known as the “Variational
Information Bottleneck” (VIB). An example is presented in
Figure 1. The “encoder network” - shown in blue - takes the
original signal as input and computes the mean and covariance
matrix of a multivariate Gaussian distribution. A codeword z
is then sampled from this distribution and used as input by
the decoder network - shown in orange - which computes the
probability that the (binary) outcome was a 1. Figure 1 shows
the network architecture used in this work, but the method is
generic with respect to the method used to compute f,, and
fs

Intuitively, the first term in Equation 3 tries to maximize
the accuracy of the prediction. The “encoder” distribution
q4(Z|X) tries to map similar input signals to similar regions
of the latent space, while the “prior” p(Z) acts as a regularizer
which encourages the codewords to be distributed over a
high-dimensional ball and helps prevent overfitting [27]. The
Lagrange multiplier 8 controls the tradeoff and must be set
as a hyperparameter. In general, the bound in Equation 3 will
not be tight. A limitation of the method is that a rigorous
assessment of the bound is difficult and empirical methods
(e.g. cross-validation) must be used instead.



D. Invariance to Signal Artifacts

The encodings z obtained by training a neural network to min-
imize Equation 2 have the useful property of being maximally
invariant to “nuisance transformations” to the raw signal [25],
[27]. Let N be a random variable such that I(N; X) > 0 but
I(N;Y) = 0; that is N induces some perturbation to the input
signal but is unrelated to the outcome of interest. A common
example in the context of EEG analysis is ocular artifacts (eye
blinks). Then amongst all representations of the signal, the z
obtained by training a neural network to minimize Equation
2 minimizes I(Z; N) - in other words, the representation is
maximally invariant to nuisances. A proof is given in [27].
In Section III-C we demonstrate empirically that training a
DNN to minimize Equation 3 allows the signal representation
to automatically ignore information about artifacts resulting
from eye blinks.

III. EXPERIMENTAL ANALYSIS
A. Data

We use a publicly available dataset provided by the “Phy-
sioNet” EEG database [28]. The dataset consists of surface
EEG recordings gathered from 10 patients with drug resistant
epilepsy. We here use two EEG channels located at the left and
right temple to be consistent with the environment faced by
developers of embedded systems for seizure detection [5]. For
each patient, we randomly sample two seizures to serve as test
data and one to serve as validation data for hyperparameter
tuning. The remainder are reserved for training. We discard
two patients with less than four seizures. To account for vari-
ability due to the sampled test set we repeat each experiment
25 times and report mean values.

Consistent with prior work in the domain, we partition
seizure events into windows of eight seconds in length and
advance the window by one-half second at each training ob-
servation. Because the vast majority of the signal corresponds
to normal brain activity, we randomly sample eight second
windows of normal brain activity to obtain a training set
with balanced positive and negative examples. While the exact
number of training and testing examples varies depending on
the randomly sampling, the train and test set both consist
of approximately 5,000 observations while the validation set
contains approximately 2, 500 observations.

To mitigate bias, we resample the “non-seizure” windows
every three epochs during training. We rescale the data in
each channel to have zero mean and unit variance but do not
pre-process the signal in any other way. We use the “Adam”
optimizer [29], and train until validation cost fails to decrease
for thirty successive epochs or until 600 total epochs. At the
conclusion of training, the weights which yield the lowest
validation cost are retained.

B. Model Architecture and Training

As noted above, we parameterize the encoder distribution as:

z~ Nzl fu(x), fs(X) = [ux) + fs(x) 0 )

where € ~ N(0,I) and ® denotes element-wise multiplica-
tion. Intuitively, we use a deep neural network to compute the
mean and variance of a factorized (e.g. diagonal) Gaussian
distribution and then sample codewords from this distribution.
Thus, our network is inherently stochastic in nature. We
emphasize that this stochasticity is essential to the properties
of the representation [30].

A diagram of our network architecture is shown in Figure
1. The network consists of three identical 1-dimensional
convolution blocks. Each block consists of two convolution
layers each with eight filters using a kernel size of three and a
stride of one followed by a 1-dimensional max pooling layer.
Following the convolution layers, the mean and (diagonal)
log-covariance matrix of the Gaussian are computed using a
fully connected layer with a linear activation. The decoder is
a simple multi-layer-perceptron with 2 fully connected layers.
All models are implemented using TensorFlow/Keras and use
the Adam optimizer [29], [31]. We tune hyperparameters for
learning rate, decay, and L2-regularization using grid search.

C. Invariance to Nuisance Factors

We here investigate the practical ability of the VIB to learn
signal representations which are invariant to EEG signal arti-
facts. In practice the VIB bound will not be tight and there
is expected to be “leakage” of irrelevant information about
X to Z. We here use a test proposed in [25] to measure the
invariance of the extracted representations to nuisances. As a
case study, we consider invariance to perturbations caused by
eye blinks but emphasize that the method is agnostic to the
specific type of nuisance which need not be specified.

We consider two neural networks trained for seizure de-
tection. The first is our VIB model as described in section
III-B. The second is a baseline model which uses the same
architecture but replaces the stochastic layer of the encoder
with a standard fully connected layer. Accordingly, we train
the baseline model only to minimize the cross-entropy loss.
We here fix the dimension of the latent space at d = 4 as
we found little difference in results between models with d
ranging from 2 to 16.

Our hypothesis is that the representations learned by the
VIB model convey less information about signal artifacts -
in this case whether or not the subject is blinking - than do
those of the standard neural network. To test this, we extract
the latent representation for each window (e.g. the z,) and
train a secondary classifier - a random forest - to discriminate
between windows which contain a blink and those which do
not. While our data is not labeled with blinks, we obtain
“ground-truth” data by applying a publicly available MATLAB
blink-detection algorithm to the raw signal [32]. If the latent
representations convey information about whether or not the
subject is blinking then we would expect better than chance
performance on this task.

Results are presented in Table I. The first column presents
test accuracy on the primary task of seizure detection while
the second presents test accuracy on the secondary task of
blink detection. We use a student-t test to determine whether



the observed differences in mean are statistically significant
[33]. Table I reports p-values from a test of the null hypoth-
esis that the observed difference between the baseline model
performance and the VIB model is due to chance against the
alternative that it is not.

Results are consistent with our hypothesis that minimizing
the VIB cost function yields representations which automat-
ically ignore ‘“nuisance” information in the raw signal. We
find that blink-detection models trained on the latent features
extracted from VIB models reduce accuracy on the blink detec-
tion task by up to 12.3% relative to the baseline, and reject the
hypothesis that this difference is due to chance. Furthermore,
we find that accuracy on the nuisance task decreases as 3
increases which is consistent with the interpretation of 5 as
controlling flow of information into the latent representation.
We find no statistically significant difference in accuracy on
the primary task of seizure detection between any of the VIB
and baseline models. We regard these results as evidence that
the VIB cost function can be used to reduce the confounding
effects of nuisances without significantly reducing model
accuracy.

TABLE I
ACCURACY ON BLINK DETECTION TASK
Accuracy
Model Seizures  p-value [| Blinks p-value

Baseline 0.849 0.674
B=1x10"7 0.841 0.510 0.625 0.000
B=1x10"° 0.831 0.197 0.611 0.000
B=1x10"3 0.835 0.256 0.606 0.000
B=1x10"2 0.832 0.222 0.591 0.000
HYPOtheSiS Ha * Hyib 7é Hb Ha D iy <y

Notes: Table reports test-set accuracy on the primary task of seizure
detection and the “nuisance” task of blink detection. A value of 1.0
would indicate perfect accuracy. Each reported value is the mean of
25 runs of the experiment. Reported p-values are for a test of the
null hypothesis that the observed difference is due to chance against
the indicated alternative.

D. Analysis of Latent Features

The preceding discussion provides an empirical verification
of our claim that the VIB formulation learns a representation
of the signal containing only the information needed to dis-
criminate between seizure and non-seizure. In this section, we
address the problem of interpreting that information.

The power in several EEG frequency bands has long been
known to be significant for characterizing seizures [21]. These
bands are known as: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12
Hz), beta (15-30 Hz), and gamma (30-80 Hz) [34]. We now
demonstrate that these features of the signal are correlated with
the representation obtained by the neural network.

We first extract the latent representation for all (training)
signal windows in our database and stack them into a matrix
Z € RW>4 where W denotes the total number of windows and
d denotes the dimension of the latent space. For each window
and each EEG channel, we then extract the relative power in

the five frequency bands stated above and stack them into a
matrix F € RW*%_ Qur goal is to estimate the correlation
between F and Z.

Table II presents results from a “canonical correlation
analysis” (CCA) of F and Z. CCA is a statistical method
which computes linear combinations of features from two
sets of variables which are maximially correlated and is well
suited to estimating the linear relationship between two sets
of variables. As in Table I, each value represents the mean
across all 25 runs of the experiment. Each number represents
the strength of the correlation between a linear combination
of features in F' and a linear combination of features in Z.
A value of +1.0 would indicate a perfect linear relationship
while a value of 0.0 would indicate no linear relationship.

We find that the strongest canonical correlates have cor-
relation coefficients between 0.50 and 0.61 which implies a
fairly strong linear relationship between the latent variables
and frequency domain features of the raw signal. This can be
interpreted as indicating that the latent representation contains
a significant amount of information about the power features
in the raw signal. We note that CCA can only capture
linear relationships between two variables and the true mutual
information between F' and Z may be higher.

We regard this as tentative evidence that our model is
extracting signal features known to be medically relevant.
While this accords with medical research and prior work
[15], [20], a noteworthy limitation of this approach is that
it indicates only an empirical relationship and cannot be used
to conclude the effect is causal. We leave this matter for future
work.

TABLE II
CANONICAL CORRELATIONS
Value of 3
1x1077 1x10™® 1x10% 1x102

Correlate 1 0.604 0.611 0.586 0.505
Correlate 2 0.349 0.298 0.283 0.175
Correlate 3 0.084 0.066 0.060 0.060
Correlate 4 0.033 0.034 0.030 0.034

Notes: Each value indicates the correlation coefficient between the
canonical correlates of F and Z. A value of +1.0 would indicate a
perfect (linear) relationship while a value of O would indicate no linear
relationship. Reported values are the average of 25 runs.

IV. CONCLUSION

In this work we have adopted an information theoretic view of
seizure prediction and demonstrated how to construct signal
representations containing only the information relevant for
discriminating between seizure and non-seizure. We have
demonstrated empirically that these signal representations are
able to automatically “ignore” information about ocular ar-
tifacts in EEG signals. We have further demonstrated that
the signal representations obtained by our method encode
features of the raw signal known to be medically relevant,
thus validating their interpretability.
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