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Abstract—Fault injection, in particular Differential Fault
Analysis (DFA), has become one of the main methods for
exploiting vulnerabilities into the block ciphers currently used
in a multitude of applications. In order to minimize this type
of vulnerabilities, several mechanisms have been proposed to
detect this type of attacks. However, these mechanisms can have
a significant cost or not adequately cover the implementations
against fault attacks. In this paper a novel approach is proposed,
consisting in generating the signatures of the internal state using
a Hamming code. This allows to cover a larger amount of faults
allowing to detect even or odd bit changes, as well as multi-
bit and multi-byte changes, the ones that make ciphers more
vulnerable to DFA attacks. As case of study, this approach
has been applied to the Advanced Encryption Standard (AES)
block cipher implemented on FPGA using T-boxes. The results
suggest a higher fault coverage with an overhead of 16% of
resource consumption and without any penalty in the frequency
degradation.

Keywords—Fault Attack, AES, Countermeasure, FPGA imple-
mentation, Hamming Code, DFA.

I. INTRODUCTION

While the existing encryption standards have proven to
be mathematically secure, there are techniques that allow to
attack the physical implementation of such algorithms. These
attacks include Side Channel Analysis (SCAs) and Active
Faults Analysis Attacks. In the first case, the attacker tries
to obtain information from the cryptographic algorithm during
encryption in a passive way (measuring its power consump-
tion or electromagnetic emissions among others). The most
known SCAs are the Differential Power Analysis (DPA) and
Correlation Power Analysis (CPA). In the second case, the
attacker tries to manipulate the circuit in a non-permanent way
to generate transient operating errors (faults) and thus obtain
the secret information contained by the device. This paper
focuses on Differential Fault Analysis (DFA) and non-invasive
active fault injections, due to their effectiveness and the real
threat they pose to the security of cryptographic devices.

DFA has led the international community to focus on
the study and development of techniques to prevent these
types of attacks. The so-called countermeasures or detection
schemes try to minimize the vulnerabilities of cryptocircuits
against the numerous attack techniques. There are therefore
numerous proposals for detection schemes reported in the lit-
erature, such as hardware redundancy [1], temporal redundancy
[2], information redundancy [3] or the combination between
them [4], [5]. Within the different schemes, in this paper

we will focus on information redundancy schemes. The main
contribution of the paper is the proposal of a methodology
for designing a fault detection scheme using the Hamming
codes. The proposed approach is particularly targeted at block
cipher implementations taking advantage of memory blocks
for the data transformation. With the use of Hamming codes
it is possible to protect the data being processed in a more
comprehensive way at a lower cost. As case of study, the
Advanced Encryption Standard (AES) block cipher [6] is
considered, using a T-boxes based implementation. Note that,
while T-Box based implementations on software tend to be
vulnerable to timing attacks, hardware based implementations
are not and result in particularly efficient designs. The obtained
implementation results suggest that using this methodology it
is possible to detect both even/odd-bit and single/multi-byte
faults, thus protectecting against DFA attacks like [7]–[10], at
a cost of 16% LUT usage increase and without affecting the
original achievable frequency.

The rest of the paper is organized as follows. Section
II introduces the AES block cipher and related T-Box im-
plementations. Section III presents a overview of the main
DFA attacks and related countermeasures. Section IV describes
the proposed detection approach and its application to the
AES algorithm. Section V presents the obtained experimental
results on a FPGA, discussing the fault coverage, area and
performance impact, and state of the art comparison. Final
concluding remarks are presented in Section VI.

II. AES ALGORITHM

The AES cipher is the NIST standard, selected to replace
the DES, using the Rijndael algorithm [6] with 128 bit input
blocks. Depending on the key size (128, 192, or 256 bits) AES
performs the input transformation over multiple rounds (10, 12,
or 14, respectively). The round process consists of processing
the (16 byte) input state S though the operations SubBytes(),
ShiftRows(), MixColums() and AddRoundKey(), as illustrated
in Figure 1a) for a 128 bit key.

The SubBytes() operation is a non-linear transformation
that replaces one byte with another. The ShiftRows() function
rotates each of the bytes of state S to the left 0, 1, 2
or 3 positions as a function of the row of state S. The
MixColumn() transformation multiplies each column of the
state S by a fixed polynomial. Finally, the AddRoundKey()
operation performs the bitwise-XOR operation between the
state S and the expanded key of that round.



Fig. 1. Schematic representation of AES: a) Standard, b) T-box based.

Hardware implementation wise, the computation can be
performed by discrete logic operations or by lookup tables,
mapping part of the computation to memory blocks. This
mapping can range from performing part of the bytes sub-
stitution operation to perform both the bytes substitution and
part of the MixColumn operation, using T-Boxes [6], [11], as
illustrated in Figure 1. Note that, T-Box implementations are
possible since the byte substitution operation is independent of
the byte position, allowing the ShiftRows() to be performed
before the SubBytes(). Particularly in FPGA devices, the
use of T-Box based implementations can take advantage of
existing embedded memory blocks, allowing for more efficient
designs [12].

While the vulnerability of T-Box based implementations
against fault injection attacks has not been deeply analyzed, the
S-box based implementations have been analyzed suggesting
different vulnerabilities [7]–[10], as described in the next
section.

III. DFA STATE OF THE ART

The DFA technique is one of the most influential tech-
niques within the field of cryptanalysis. It consists of recov-
ering the secret key by the mathematical analysis of outputs
generated by the cipher in both its correct and faulty mode of
operation.

The two main works on DFA applied to AES are those
presented by Giraud [7] and Dussart [8]. The first one estab-
lishes that if an attacker is able to inject a single bit-level
fault into the state matrix before the operations of the ninth
round, namely, during the operations of the eight round, it is
possible to recover the secret key. The latter one describes how
to recover the key by injecting different faulty bits in the same
byte of the state matrix after the seventh round and before the
ninth operation of MixColumn(). Another recently DFA attack
on AES is presented in [9], called Incremental Fault Analysis
(IFA) attack and represents a good example of the continuous
interest in designing new techniques to attack the implementa-
tions. Another theoretical attack on the KeySchedule() matrix
is also described in [7], where by injecting a complete faulty
byte in the last rounds it is possible to determine the secret
key. Other techniques based on similar fault models need the
injection of a single byte or multiple faulty bytes in the state
matrix or KeySchedule() in the last rounds to compromise the
security of the AES cryptocircuit [10].

The reported vulnerabilities of the AES cipher show that
the faults injected during the SubBytes() and MixColumn()
operations represent a very important leakage of information.
Since these operations are performed through T-boxes, the
reported vulnerabilities are extensible to this type of imple-
mentations with memories and therefore must be protected.

In regard to fault coverage some approach are limited, de-
tecting only odd or even bit faults, while other more complete
solutions are able to cover single or multi-byte faults.

Considering these types of fault coverage, different coun-
termeasure approaches can be found in the literature, namely:
hardware redundancy, which consists in duplicating the whole
or part of the cryptographic circuit and running it in par-
allel; or temporal redundancy, which consists in repeating
cryptographic operations or encrypt/decrypt every data. In
both cases the duplicated result is then compared to check
its correctness. Hardware redundancy schemes are those that
offer the greatest protection, since they can detect any type
of fault injected, however, the cost in area tend to be very
high. For example, in [1] a hardware redundancy scheme is
proposed that is able to detect all type of faults but at area
overhead of 86%. Temporal redundancy schemes have the
lowest area degradation, however they present high throughput
degradation. In [2] a more efficient solution is presented with
an additional 7% resource usage and a frequency degradation
of 17%, but the fault coverage only considers single bit faults.
Information redundancy schemes are those that add some type
of information to the processed data, such as parity bits.
This type of approach presents the lowest area overhead and
the lowest performance degradation, depending on the design
technique. For example, in [3] a scheme is proposed with an
area overhead of 8% but it is only able to detect odd faulty bits.
Other solution consider a combination of these approaches,
such as the one presented in [4], able to detect all type of
faults but at a 38% resource usage increase, or the presented
in [5] that use the polinomial residue number systems (PRNS)
with redundant AES modules to detect the faults.

Approaches exploiting information redundancy tend to
be more efficient, presenting the best tradeoff between
area/performance penalties, however sometimes at a cost of
lower fault coverage [3], [13]–[18]. The solutions presented
in [3], [13]–[15], only protect against odd faulty bits. For
example, in [3] one parity bit per byte in the S-box() and
two checkers are implemented. In [13] a similar approach with
one parity bit is used, but in this case, the scheme implements
a backup redundant component to correct the possible faults,
being also applicable to the KeySchedule(). In [14] different
cyclic redundancy checkers over GF (28) are implemented
with the penalty that they are not able to detect even-bit or
byte faults. In [15] an implementation of the S-box() using
composite fields to improve the robustness of the S-box() is
presented, needing a parity bit to protect the rest of the cipher
operations. The scheme presented in [16] is an improvement
of [15] where the scheme is able to detect even-bit faults but
not single/multi bytes faults. On the other hand, the solutions
proposed in [17] and [18] are able to detect even/odd-bit and
single/multi-byte faults. In [17] the fault detection is based on
linear predictors improved with (n, k) codes and robust cubic
network. Finally, in [18] the scheme protects only the S-box()
by relating the input byte to the output byte by means of a



difference and using a checker. For the rest of the processes
they use a parity bit. This scheme tends not to detect all
possible even-bit faults.

IV. PROPOSED DETECTION SCHEME

DFA attacks can target different point of the computation
by injecting different types of faults, from single even or odd
bit faults to single and multi-bytes.

Therefore, one of the main consideration when designing a
fault detection scheme is to consider the possibility of detecting
faults during the data transformations. Taking this into account,
the proposed approach is based on the fact that the more
information is known about the data being processed, the
harder to modify them without being detected.

Our proposal does not consider the vulnerabilities pre-
sented by these works on the KeySchedule(), using the trans-
formation rounds as application example, although our detec-
tion scheme is equally applicable to protect the KeySchedule().

A. Hamming code as signature generator

The proposed scheme is based on the Hamming code
as a signature generator of the data used by the cipher.
The Hamming codes are well known as a family of linear
error-correcting codes invented by Richard W. Hamming in
1950 [19]. The main use of these codes is to detect faults
in the data transmission and correct them. Within the fault
detection context, it is possible to use these codes to obtain as
much information as possible about the data being processed.
The use of Hamming codes to protect the AES cipher is not
new. In [20], it is used to correct errors in the state matrix
when a parity bit detects an error. In the proposed approach
Hamming codes are used as a signature generator of the data
being processed throughout the entire round.

Hamming codes add additional bits to the original data, that
are able to detect/correct errors. With these codes, it is possible
to protect d bits, by adding m bit to the original message,
resulting in a total of n bits. k is the maximum number of
bits that could be encoded. Equations (1) to (4) illustrate the
Hamming code characteristics.

Hamming Code (n, k) (1)
d ≤ k (2)
k = 2m −m− 1 (3)
n = 2m − 1 (4)

For example, to protect 8 bits of information using 4
additional bits, it has d = 8 and m = 4. Therefore k = 11,
and thus 11 bits of information are encoded resulting in a total
data length of n = 15. Then d ≤ k and therefore with m = 4
extra bits is enough to protect the data.

By applying a Hamming code as a signature generator for
the fault detection in the T-box based AES, and using the
signatures depicted in (5), it is possible to obtain a signature
composed of 4 additional bits (M0−3) to protect 8 bits of data
(D0−7). M0−3 denotes the 4 bit signature added to the 8 bit
of processed data.

M0 =D0 ⊕D1 ⊕D3 ⊕D4 ⊕D6

M1 =D0 ⊕D2 ⊕D3 ⊕D5 ⊕D6

M2 =D1 ⊕D2 ⊕D3 ⊕D7

M3 =D4 ⊕D5 ⊕D6 ⊕D7

(5)

Fig. 2. Representation of the signature calculation and memory usage.

By applying the signature generation on the input data of
a cryptographic operation (I.Signature) and on the output of
this same operation (O.Signature), it is possible to merge
and check the join signature (F.Signature) using a XOR
operation, as depicted by (6):

F.Signature = I.Signature⊕O.Signature (6)

With this approach it is only required to store and test a
single 4 bit value for each byte to be protected. This is the only
additional value to be stored, as described in the next section,
in order to check if the value was corrupted by a fault injection
during the cryptographic operation, as depicted in Figure 2.

B. Scheme application to AES T-box

The proposed solution is well suited to T-Box based
implementations, in particular when targeting FPGA devices
with embedded memories. These embedded memories blocks
(BRAMs) output upto 18 or 36 bits, depending on the selected
device and technology.

The T-box() has an 8-bit input and outputs 32 bits. This
32-bit output is the result of the Galois multiplication of
the constant values with the value obtained after the S-
box() operation, as depicted in Figure 1b. For the encryption
the 4 constant values are {1, 1, 2, 3} and {9, e, b, d} for the
decryption. For simplicity sake, the following discussion only
focuses on the implementation for the fault detection for the
encryption process. Nevertheless, the following solution can
be directly applied for decryption. In the following discussion
the output of the T-box(), depicting the constant multiplication
of the S-box() output, is represented by {1S, 1S, 2S, 3S} for
the encryption.

As described in [12], the 4 bytes of each AES T-box()
output can be combined to derive the S-box() output (both in
encryption and in decryption), has:

1S ⊕ 1S = 0

2S ⊕ 3S = 1S

1S ⊕ 1S ⊕ 2S ⊕ 3S = 1S

(7)

With this, instead of generating a Hamming code to protect
32 bits, which would require a high number of protection bits,
only a 8-bit value needs to be considered, namely 1S.

Knowing the value of the T-box() input, it is possible to
generate the signature of the input and Xored with the 1S
signature, obtaining the final signature using (6). The final
signature is added to each data contained by the BRAM, as it
is shown in Figure 2 and is checked after the T-box() process.
This means that 4 extra bits of information are needed for each
byte of the State. Given that the available BRAMs already
output 18 or 36 bits, this additional redundant information can



TABLE I. COMPARISON WITH DIFFERENT DETECTION SCHEMES.

Solution Type of redundancy Area Frequency Type of Fault detected Technology
protection Overhead Degradation Odd Bit Even Bit Single byte Multi Byte

Unprotected none 1 1 � � � � Spartan 6
[3]

Information

1.08 0.70 � � � � Virtex 1000
[13] 1.44 NIA � � � � NIA
[14] 1.73 0.64 � � � � NIA
[15] 1.40 NIA � � � � NIA
[16] 1.32 0.97 � � � � Virtex II
[17] 1.77 0.86 � � � � Virtex E
[18] 1.25 0.88 � � � � Virtex 5

Proposed 1.16 1 � � � � Spartan 6
[1] Hardware 1.87 1 � � � � Virtex 5
[2] Temporal 1.07 0.83 � � � � Virtex 4
[4] Combination 1.38 0.78 � � � � Virtex 6
[5] 1.58 0.83 � � � � Spartan 3

1 NIA=No Information Available.

be stored for free. The only additional area cost comes from
the signature generation and comparison logic.

With this approach, and considering (7) and (8), it is
possible to cover the computation of the T-box(), namely any
fault produced during the memory access/read (denoted by e),
and in the input/output of the T-box() process.

(1S ⊕ 1S)⊕ e �= 0

(2S ⊕ 3S)⊕ e �= 1S

(1S ⊕ 1S ⊕ 2S ⊕ 3S)⊕ e �= 1S

(8)

V. RESULTS

In order to properly evaluate the proposed solution, the
fault detection approach was applied to the T-Box based AES
design descried in [12] and implemented on a Xilinx Spartan 6
XC6SLX75 FPGA using Xilinx ISE 14.7. This implementation
uses the devices dual port BRAMs, allowing to map two T-
Box() functions into two single memory block, each mapping
18 bits of the output.

A. Fault coverage

In order to test the fault detection proposal, different fault
simulation tests have been implemented where even/odd-bit
and single/multi-byte faults have been considered. The faults
have been injected at the input of the T-box(), inside the
T-box(), and in the output data of the T-box(). To perform
the fault simulations, a fault is injected during the encryption
process in each test and an error signal is activated in case
of fault detection. All the injected faults were detected by our
scheme.

B. Comparison with other schemes

In order to properly compare and evaluate the cost of
the proposed solution, differential metrics were obtained,
presenting the ratio between the unprotected and protected
implementations. The obtained results show a cost of 645 Slice
Registers and 720 LUTs for the proposed protected solution.
In regard to the unprotected design, this represents a total
resource usage increase of 25.5% more Slice registers and 16%
more LUTs, and no additional BRAM usage. This is achieved
with no frequency degradation nor increase in the number
of computation cycles, i.e. achieving the same throughput.
While the amount of registers increases more than the LUTs,
LUTs are the resources imposing the overall device occupation
(since more LUTs than registers are required). Particularly,
the signature calculation and fault detection logic, depicted in

Figure 2 requires 55 LUTs per each 4 bytes, i.e. 13 LUTs per
state byte.

In order to compare the proposed method with those
proposed in the most relevant state of the art, the relative cost
and provided fault coverage of these solutions are summarized
in Table I. This table depicts the area overhead, frequency
degradation, and type of faults detected for the AES imple-
mentations. This comparison mostly considers the information
redundancy solutions. For completeness, hardware, temporal,
and combined redundancy schemes are also presented. The
type of faults detected by each solution is divided by Odd Bit,
Even Bit, Single Byte and Multi Byte. The ability to
detect each type of fault is represented by a check or cross
mark, respectively.

In regard to information redundancy approaches, the solu-
tion in [3] presents the lowest impact in terms of area, but has
a small fault coverage and imposes a significant performance
degradation. The solutions proposed in [17] and [18], provide
a good fault coverage but at a higher resource usage and
with a performance degradation. In particular the scheme
in [18] is able to detect even/odd-bit and single/multi-byte
faults and it only protects the S-box() computation. Hardware
redundancy approaches such as the one in [1] provide a
complete fault coverage without impacting the performance,
but almost doubles the required hardware resources.

VI. CONCLUSIONS

This paper proposes a novel approach for signature gen-
eration using a Hamming code to protect block ciphers. This
approach has been implemented into the AES implementation
supported by T-Boxes on a reconfigurable device. The obtained
results suggest that the proposed solution can be deployed with
a LUT overhead of about 16% and without any performance
degradation. The fault coverage evaluation indicates that the
proposed scheme is able to detect all the types of faults targeted
by DFAs: even and odd faulty bits in the same or in different
bytes. Finally, the comparison with the related state of the art
suggests that the proposed solution is able to provide a higher
fault coverage at a overall significant lower resource cost, and
without a throughput degradation.
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