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Abstract—The emerging popularity of the Internet of Every-
thing makes the security an urgent issue, as well as the need for
speed to cipher and decipher any information, which is essential
for the embedded devices. Unlike many works in this field, where
propositions considering application specific integrated circuits
(ASICs), coprocessors, field-programmable gate arrays (FPGAs)
or software were presented as alternatives to raise the efficiency
of execution, we addressed the enhancement of the instruction
set architecture (ISA) taking advantage of a hybrid design
methodology to boost the performance as well as the design itself.
We validate our ISA by measuring the area overhead, memory
parameters and the speedup for different optimized implemen-
tations of AES, DES, 3DES and SHA using the Cadence R© LX7
Processor and Xtensa R© platform. The proposed architectures
provided an excellent tradeoff with the area, memory and cycle
count performance figures. Experimental results show that the
proposed ISA can reduce cycle count between 1.76 and 10.99
with a cost of 6% in average of area overhead in a lightweight
processor architecture.

Index Terms—AES, DES, SHA, Cryptography, IoT, Xtensa R©

I. INTRODUCTION

For several decades security has been a concern in computer
networks, ranging from LANs up to the World Wide Web.
Nowadays, it is also a concern in the embedded world, ranging
from Sytems-on-Chip (SoCs) up to Internet-of-Things (IoT).
As the number of elements that can be connected to the
Internet keeps increasing, a new term has been proposed: The
Internet of Everything (IoE). It expands the concept of IoT
in that it connects not just physical devices but quite literally
everything [1].

Modern embedded computing systems are based on pro-
grammable platforms composed by several IPs (e.g. processors
and memories) integrated on a single chip and are able to
dynamically load and execute dozens of applications. As
consequence, such systems are likely to be threatened by mali-
cious applications which can compromise the security in many
ways, like sensible data access or data tempering. Once the
system is connected to IoT its vulnerability widens, becoming
susceptible to threats like identity theft and device jailbreaking.
Unsurprisingly, security vulnerabilities are abound in modern
SoC designs, as evidenced by the frequency and ease in which
attack activities are performed [2].

From now on, security policies concerning data confiden-
tiality/integrity, access control, and authentication are also
mandatory in embedded computing systems. Cryptographic
algorithms have been widely employed to provide some level
of security, and they are present into everything, from Web

browsers and e-mail programs to cell phones, bank cards,
cars, and even into medical implants. Due to the intensive
computing nature of several algorithms, hardware implemen-
tation is common solution to overcome the typical software
approach [3][4][5][6], mainly when considering embedded
systems with limited computation power. Such specialized
hardware is typically integrated following two approaches: (i)
loose coupling or (ii) tight coupling. The former approach
connects the specialized hardware to the system bus as an
ordinary peripheral and processor communicates to it through
memory-mapped registers (load/store instructions) or I/O ports
(in/out instructions). With the latter approach, the specialized
hardware is integrated into the processor architecture (ISA)
and accessed by specialized instructions. The loose coupling
is the most common option due to the impossibility of ar-
chitectural changes in commercial processors. Besides, the
specialized hardware usually implements whole algorithms
with high performance being commonly called accelerators
[3][4]. In the tight coupling, the specialized hardware can be
implemented as a coprocessor (e.g., Intel 8087, MIPS FPU),
or it can be added to the processor data path. The second
option has been leveraged by customizable processors like
Xtensa R© [7] and ARC 600 [8] and lately by open architectures
like RISC-V [9] and MIPS [10]. The result is a new processor
with a custom ISA, and the new instructions are available
to the programmer via the same compiler and assembler that
target the processor’s base instructions.

To design a new ISA or even extend it, researchers must
take into account several aspects inherent to the processor,
like the hardware to implement such instructions or the
compiler to support them. These tasks take time and should
be tested to provide a coherent processing architecture,
which is possibly the main reason why not so many works
were proposed in this direction. Many efforts have already
been made aiming ultra-low power consumption regarding
ASIC-oriented approaches [6] or high throughput (Gb/s)
using reconfigurable hardware (FPGA) [5]. On the other
hand, enhancements on the ISA may be a feasible choice to
keep the desired degree of programmability and performance
delivered by dedicated hardware. The work in [11] extended
the ISA of a 32-bit processor through an ARM processor
simulator. The authors analyzed the more timing consuming
parts of a software implementation of the AES algorithm and
moved them into hardware, achieving between 1.43 and 3.45
improvements regarding the time spent to cipher data, but
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with no area overhead information.

The goal of this work is to present the ISA extension
of the Xtensa R©processor to accelerate the following crypto-
graphic algorithms: (i) DES/3DES (symmetric cryptography);
(ii) AES (symmetric cryptography); (iii) SHA-256 (crypto-
graphic hash).

Besides the acceleration gains, we aim to reduce memory
footprint and memory accesses with a low area overhead,
in accordance with the scarcity of resources available to
embedded devices. The selected symmetric cryptographic
algorithms are widely and frequently used on confidential
communications, whereas the cryptographic hash is applied
in authentications (e.g., MAC) and integrity assurance.

II. ALGORITHMS AND HOTSPOT ANALYSIS

This Section presents a brief description and hotspot soft-
ware analysis of the selected algorithms. Furthermore, the
basis upon which the extensions were constructed is also
established, and will be further detailed on Section III.

A. DES

The Data Encryption Standard is a symmetric-key block
cipher algorithm that follows the Feistel Cipher structure.
Therefore, both encryption and decryption share the same
transformations, differing only on the key expansion. Based
on Feistel’s work, it makes use of two simple methods,
substitution (the replacement of a plaintext element by a
corresponding ciphertext element) and permutation, as tools to
elaborate its transformations. The general structure of the DES
algorithm is composed of 16 rounds of encryption/decryption
realized upon each plaintext block of 64 bits. Before the
round 1, the plaintext passes through an Initial Permutation
(IP) and after round 16 through its inverse (IP−1). The
key expansion process is based on left circular shifts and
permutations (Permuted Choice 1 and 2). It takes the 64 bits
key and generates 16 round keys to be used at each round.
A round consists of (i) apply the F function to the right
half of the block, (ii) XOR the result with the left half and
(iii) make the initial right half the new left half of the block.
The F function is responsible for performing the mentioned
substitutions, through the use of substitution tables (S-box).

The most computing intensive parts of the algorithm are
F function and key expansion, making them the hotspots of
DES. They perform the most transformations (permutations
and substitutions), therefore, they will be the focus of the
acceleration process later detailed.

B. AES

The Advanced Encryption Standard is a symmetric block ci-
pher based on the Rijndael algorithm, which makes use of four
transformations to perform encryption/decryption. Depending
on the chosen key size (128, 192 or 256 bits), the number of
rounds is distinct, however, the algorithm’s structure remains
the same. AES works with plaintext blocks organized into 4x4
byte matrices called States, which are transformed in every

round. Encryption consists of first applying an initial transfor-
mation to the block, called AddRoundKey, and then perform-
ing multiple rounds made of four transformations (SubBytes,
ShiftRows, MixColumns, AddRoundKey), followed by one
last round of only three transformations.

As with DES, AES applies iterative substitutions and per-
mutations over the plaintext block throughout many rounds,
using a round key on each of them. The key expansion process
generates the round keys based on the original one and they
are also organized into matrix form. Such process makes use
of another two transformations very similar to SubBytes and
ShiftRows. Considering a word oriented version of AES, the
code for SubBytes and ShiftRows can be re-utilised on the
key expansion, which is interesting to note for a hardware
implementation.

The algorithm uses finite field arithmetic over the Galois
Field GF(28) to perform all of its mathematical operations.
Thus, every element B of the State matrix is a polynomial
∈ GF(28) and is stored in an eight bits variable. Equation 1
details its representation.

B(x) =
7∑

n=0

bix
i (1)

This brings important implications to the execution of
the four transformations and their further hardware imple-
mentations, since regular arithmetic operations have different
definitions in GF(28). Most software implementations of AES
actually avoid calculating according to those definitions, since
generally there is no efficient way to process them, having then
to rely on lookup tables (LUTs) with pre-calculated results
(S-box). A hardware approach, though, has better means to
perform the required computation and is explored in this work.

Evaluating the hotspots of AES, the highest cycle counts
belong to MixColumns and its inverse, since matrix multi-
plication requires many accesses to LUTs (S-box). SubBytes
and ShiftRows, together with their inverses, also count for a
significant portion of the cycles, so the focus of optimization
are on these transformations.

C. SHA-256

The Standard Hash Algorithm 256 maps a variable-length
input plaintext into a fixed-length ciphertext, 256 bits wide,
known as the message digest. In a hash function, typically
the input plaintext is padded so that its total bit length is
multiple of a certain integer, 512 in the case of SHA-256.
After padding, the message is divided in 512 bits blocks,
which are then processed to generate the message digest. The
most important component of the algorithm is the one-way
compression function F , which updates the contents of the
block in a set of 64 rounds. The transformations made over
the blocks are chained, with every iteration of the F function
feeding the next ones. Each round is basically composed of
permutations, logic operations and additions performed over
a set of 8 variables, those being a, b, c, d, e, f , g and h.
To execute these, the algorithm makes use of auxiliary vector
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variables 64 elements wide, namely a set of constants K and
a message schedule, which is updated every round.

The greatest hotspot of SHA-256 is the round transfor-
mation, since it alone performs all changes made over the
plaintext. This evidences the upmost relevance of the F
function, as the highest portion of processing is consumed
by it. Thus, the efforts of hardware optimization should focus
on the round transformations.

III. CRYPTOGRAPHIC INSTRUCTIONS EXTENSION

The proposal to accelerate the algorithms is to act over
their hotspots, to obtain the best tradeoff between acceleration
and processor area overhead. Xtensa R© Xplorer was employed
together with Cadence’s specialized HDL language called TIE
(Tensilica Instruction Extension) to develop specialized in-
structions. The Xtensa R© Xplorer creates an RTL description of
the processor and generates tailored versions of all necessary
software development tools including the compiler, assembler,
debugger and instruction set simulator. The developed instruc-
tions can be fired from C code through ordinary functions.

A. Extensions for DES

Many of the transformations used by DES are merely
permutations of bits. This is the case with Initial Permutation
and its inverse applied on the block, Permutated Choices and
left circular shift used in key expansion. While these may
not perform well in software due to several shift and logic
instructions, dedicated hardware excels in their execution,
since a specific permutation only requires rewiring of its
input bits. Out of the 12 instructions proposed for DES,
11 were developed just for permutations, providing most of
the performance gain with very low area overhead. These
instructions also support the implementation of 3DES which
corresponds to encryption/decryption of data three times in a
row in order to increase the security with a larger key.

The substitutions performed inside the F function make use
of the S-boxes, which require 512 Bytes of constant data. The
last extension proposed for DES takes advantage of a TIE
construct called TIE tables, which supports the implementation
of LUTs in hardware and allows several accesses within a
single cycle. By using such tables it is possible to reduce
memory access and memory footprint. Thus, the entire F
function could be implemented in hardware.

B. Extensions for AES

AES yields different obstacles in relation to DES, since
encryption and decryption do not share the same transfor-
mations, requiring more hardware. Considering this, word
oriented generic instructions that can be shared throughout the
algorithm are proposed, with the main objective of reducing
area overhead. Such instructions act on a full row or column
of the 4x4 State matrix.

The approach to optimize MixColumns relied on imple-
menting hardware that fully calculates the matrix multipli-
cations performed over the field GF(28), instead of typical
LUT based implementations storing the multiplications results.
As can be deduced by the rules of finite field arithmetic,

multiplication by two of an element B ∈ GF(28) expressed by
the bitstring [b7b6b5b4b3b2b1b0] can be achieved by performing
a left shift followed by a conditional XOR with the irreducible
polynomial m(x) = x8 + x4 + x3 + x+ 1. This is equivalent
to performing the following transformation to an element:

B
′
= 2 ∗B = [b6b5b4(b3 ⊕ b7)(b2 ⊕ b7)b1(b0 ⊕ b7)b7] (2)

As can be seen in Equation 2 the logical implementation to
double an element belonging to GF(28) requires only 3 XOR
gates and rewiring (left shift). Up from this basic unit a full
MixColumns multiplier was created. Multiplications by larger
numbers can be achieved with simple tricks, for instance, in
a multiplication by three the element is first doubled using
Equation 2 and then added with its original value. Additions
in GF(28) are implemented as bitwise XOR. Figure 1 depicts
the developed architecture for the MixColumns transformation
of one element of the State Matrix. Since the final extension
operates on a whole column of State, four equal instances of
the presented circuit were used. The resulting MixColumns
multiplication instruction can be used for encryption and
decryption, and logically requires roughly 280 XOR gates and
16 AND gates.

Figure 1. Architecture of the Mixcolumns Multiplier.

The second instruction created takes care of SubBytes and
ShiftRows and can be used for encryption, decryption and
key scheduling. ShiftRows is performed by merely selecting
one out of the possible byte shifts (rewiring) that can be
made over a State row or word (in case of key scheduling).
SubBytes involved creating a GF(28) inverter and a module
that performs the affine transformation and its inverse. Several
works have already been proposed on this subject, the new
instruction proposed is based on [12], though the hardware
they presented was expanded here to work on a full row of
the State matrix. The logical implementation of this second
instruction component required 584 XOR gates and 280 AND
gates.

C. Extensions for SHA-256

Conceptually SHA-256 acceleration is mostly straightfor-
ward, with the core of the matter being the compression func-
tion F . To make the chained transformations, the algorithm
uses a temporary buffer throughout all iterations of the hash

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:49:39 UTC from IEEE Xplore.  Restrictions apply. 



process composed of the variables a, b, c, d, e, f , g and h,
resulting in many memory accesses during the 64 rounds of the
F function. To solve this issue special registers were created,
cutting the need to push data back and forth between CPU and
memory, making it simple to implement an instruction which
calculates one full round of the F function.

Another costly computing task the algorithm has to process
is preparing the message schedule, which needs to be done
in every iteration of the hash process. This is the reason
behind the second instruction proposed. The aforementioned
special registers were also employed to accelerate message
scheduling, which is based on several permutations.

IV. EVALUATION AND DISCUSSION

The proposed extensions were implemented on a baseline
Xtensa configuration upon which all original algorithms were
executed. The baseline processor is a 32 bits architecture
configured with the aim of simplicity, occupying an area of
110 Kgates, running at a clock rate of 910 MHz. All additional
functionalities Xtensa Xplorer offers to configure processors
were disabled, as to keep the use of resources to minimal
levels. Figures 2 and 3 show the obtained results in terms
of cycle count, memory footprint and memory access along
with the area overhead. The baseline serves as the reference
to compare the obtained results with the baseline processor
executing each algorithm without any extension. Source C
code of each algorithm is available at [13]. The bars below the
baseline represent gains whereas above represent overhead.

The area overhead, ranging from 4.84% for AES to a maxi-
mum of 6.78% for DES, provides significant gains at low cost,
achieving an attractive trade-off. Memory access and memory
footprint have been drastically reduced. In the case of AES and
DES, this is mainly due to the elimination of LUTs (S-boxes
and multiplications), which were accessed multiple times on
the base implementation during encryption/decryption. The
reduction on memory access observed on SHA-256 is ex-
plained by the adoption of the special registers, which made
it possible to perform the whole 64 rounds of the F function
without accessing the memory buffer. Memory accesses have
become much more costly than arithmetic computations, as
noted by Horowitz [14]. For example, accessing a block in a
32-kilobyte cache involves an energy cost approximately 200x
higher than a 32-bit integer add. This important differential
makes optimizing memory accesses critical to achieving high-
energy efficiency [15].

Cycle count has also decreased significantly. The extensions
were able to nearly cut in half the cycle count of AES and
SHA-256 achieving, respectively, an average speedup of 1.85
and 1.91. DES and 3DES performance increased even more
achieving, respectively, an average speedup of 7.4 and 10.5.
The permutations required by DES/3DES are bit oriented,
which are poorly executed in software because shift/logic
instructions are word oriented. A noteworthy observation is
the consistency of performance gains throughout different
variations of the algorithms. The three versions of AES
performed roughly the same, while 3DES obtained small extra
gains in relation to regular DES. This fact happened without

Figure 2. 128-192-256 encryption/decryption AES enhanced architecture.

Figure 3. Encryption/decryption DES/3DES/SHA enhanced architecture.

any modifications on the proposed extensions, endorsing the
flexibility of the solution.

V. CONCLUSION

This paper proposes an instruction set extension for 3 dif-
ferent cryptography systems, taking advantage of specifically
designed instructions and software flexibility supported by the
ISA of the processor. The Cadence R© LX7 R© processor was
adopted as the carrier of such algorithms, and the extended
architecture was designed with Tensilica R© TIE language.
Experimental results show the viability of the proposal of
optimizing the hotspots through a hardware-software co-design
by the use of extensions. The developed extensions reduced
at the minimum almost half of the cycle count at a cost of
6% in average of area overhead. The implementation has the
resilience of being an instruction set of a configurable proces-
sor architecture, while at the same time providing excellent
performance gains with low area trade-offs.
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