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Abstract—In this paper, we present a unified FPGA based
electrical test-bench for characterizing different emerging Non-
Volatile Memory (NVM) chips. In particular, we present de-
tailed electrical characterization and benchmarking of multiple
commercially available, off-the-shelf, NVM chips viz.: MRAM,
FeRAM, CBRAM, and ReRAM. We investigate important NVM
parameters such as: (i) current consumption patterns, (ii) en-
durance, and (iii) error characterization. The proposed FPGA
based testbench is then utilized for a Proof-of-Concept (PoC)
Neural Network (NN) image classification application. Four
emerging NVM chips are benchmarked against standard SRAM
and Flash technology for the AI application as active weight
memory during inference mode.

I. INTRODUCTION

The increasing trend of memory content in System-on-
Chip (SoC) designs demand embedded or off-the-shelf Non-
Volatile Memory (NVM) with low power consumption, high
speed operations, and high endurance [1], [2]. Flash EEP-
ROM is the current state-of-art NVM technology used for
commercial and industrial SoCs. However, Flash memories
suffer from limitations such as physical scaling, erase-before-
write operation, limited endurance, cell to cell interference,
high power consumption, low programming speed, complex
controller structures. The limitations of the Flash memories are
overcome by exploring emerging NVM technologies such as
magnetoresistive random access memory (MRAM), resistive
RAM (ReRAM), ferroelectric RAM (FeRAM), conductive
bridge RAM (CBRAM) [3]–[6].

Most of the research work on emerging NVM technologies
in literature are based on model simulations of device and
circuit, at architectural/system level [7]–[10], single standalone
device or an array of devices [11], [12]. Researchers are
focused on improving the emerging NVM technologies at
different levels like materials [13], stack engineering [14],
and circuit-level strategies [15]. Moreover, testing of matured
NVM technology requires efficient characterization setup.
Single standalone setup for characterizing multiple NVM
technologies is rare to find. Commercially available packaged
memory chip testing setups are complex and dedicated to a
particular memory technology [16]–[18]. The data-sheet spec-
ifications of the commercially available NVM chips provide
typical and maximum values for write current and endurance
of the NVM chips. However, variations may occur when the
chips are used for real-time applications. The major factors

Fig. 1. Block diagram of our experimental setup for NVM characterization.

include i) incoming data to be written in the memory location
and ii) aging effect. Detailed characterization of the NVM
chips is required for system-level integration in a variety of
applications. In this paper, we present a unified test platform
for characterizing multiple commercially available off-the-
shelf NVM technologies. Our study helps in exploring elec-
trical and endurance properties of fabricated NVM chip and
exploits them by designing hardware/software techniques for
performance enhancement. The proposed hardware setup can
be used generically for characterizing off-the-shelf emerging
NVM chips (SPI or parallel interface). Moreover, the setup
presents an efficient way to indirectly extract certain analog
characteristics from the packaged chip without having access
to a dedicated analog interface. The contributions of this paper
are

1) Electrical characterization of different commercially
available emerging NVM technologies specifically (1)
toggle MRAM [19], (2) FeRAM [20], (3) CBRAM [21],
and (4) ReRAM [22] from different vendors.

2) Error characterization of NVM chips.
3) Implementation of the proposed FPGA based setup

for basic neural network (NN) application case study
comprising of a hybrid CMOS-NVM pipeline.

The rest of the paper is organized as follows: Section II
explains the experiments performed on the emerging NVM
technologies. Results and discussions are presented in Section
III. A case study of NVM technologies for basic NN applica-
tion using the proposed characterization platform is presented
in Section IV. Section V concludes the paper.
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II. EXPERIMENT PERFORMED

A. Characterization Platform

The characterization platform (shown in Fig. 1) comprises
of FPGA evaluation board, custom designed daughter board
to interface the NVM ICs, Keithley 4200 SCS characteriza-
tion system for current measurement and a host computer.
Two soft-core MicroBlaze processors are implemented on the
FPGA to control digital interfaces between the host computer,
NVM chips and other peripheral ICs. Both the soft-core
processors with dedicated hardware are used to run parallel
tasks. One of the processors (Processor 1) performs continuous
read/write/erase operations from/to the NVM chips. Another
processor (Processor 0) reads the write current measured using
the current sensor IC. The operating clock frequency of the
NVM chips (SPI based) is set to 1.5625 MHz for all the
experiments. Write current is measured using two different
methodologies: (i) using on-board I2C interface based current
sensor [23] to measure the write current of toggle MRAM.
(ii) using Keithley 4200 SCS instrument to measure write
current of FeRAM, CBRAM, and ReRAM. One terminal of
the current characterization instrument is connected to supply
voltage from the FPGA board while the other terminal of
the instrument is connected to the VDD supply pin of the
NVM chips. The host machine collects the data using virtual
serial port connection. A detailed description of similar kind
of experimental setup and procedure for current measurement
and endurance characterization is explained in [24], [25].

B. Current Characterization

Write current variations in NVM technologies due to input
data pattern is analyzed by performing extensive data write
operations with fixed number of bits toggled per byte. Initially,
all the bits in a byte are set to either ‘0s’ or ‘1s’ followed by
toggling specific bit(s) in a byte. Write current is measured
for a particular page (64 bytes). The write operations are
performed for multiple times (500 cycles) to measure the
average write current for a particular type of bits toggled.
The same experiment is repeated for different data patterns
varying the number of bits toggled (from 1 to 8) in a byte.
Write current variation due to the aging of the memory devices
is performed by writing random data at a particular location
for multiple (more than 50k) cycles.

C. Endurance Characterization

Error characterization is analyzed by performing extensive
data write operations at a particular location (address) in the
chip. For each experiment, random data write operations are
performed in a page for 200k cycles. A read operation is
performed between two consecutive write cycles. Error is
estimated by calculating the number of bits found incorrect
between the data that is “to be programmed” and the data
that is “actually programmed” at any specific byte address.
We characterize and term the nature of the error based on the
number of bits found incorrect in a byte. For example, in a
byte, if 3-bits are incorrect we termed it as a 3-bit error.

Fig. 2. Variation of average page write current with increasing number of
bits toggled for different NVM chips.

Fig. 3. (a) Variation of page write current consumption with cycling in
CBRAM. (b) Increasing pattern of write latency with cycling.

III. RESULTS AND DISCUSSION

A. Current Variation with Data Pattern

Average page write current for different emerging NVM
technologies with increasing number of bits toggled is shown
in Fig. 2(a)-(d). It can be observed that page write current
variation depending upon the number of the bits toggled exists
and is different for different NVM technologies. Fig. 2(a),
shows the current variation for toggle MRAM with increasing
number of bits toggled. It can be observed that current devi-
ation decreases with increase in number of bits toggled. This
can be explained with the fact that in toggle MRAM, current
consumption of toggled bit(s) with data pattern having more
number of 1s in the initial conditions is more compared to
data pattern having more number of 0s in the initial condition.
For example, toggling of 1-bit for data pattern 11111111
consumes more current as compared to toggling of 1-bit for
data pattern 00000000. Fig. 2(c) shows that page write current
increases linearly with increase in number of bit toggled.
This deterministic pattern as observed for the write current
in toggle MRAM and CBRAM can be exploited to save
power during data write operations. This can be obtained by
implementing encoding data write operations based on least
bits toggled [24]. No significant signature is observed for
current consumption in writing increasing order toggled bit



Fig. 4. Nature of error distribution of (a) a page (64 bytes), and (b) a byte
program for 200k cycles in CBRAM.

Fig. 5. Comparison of decrease in nature of bit errors by implementing
algorithms (soft technique) for error reduction.

data pattern in FeRAM (Fig. 2(b)). The current consumption
for writing any data pattern is constant and does not vary with
number of bits toggled. However, observed magnitude of the
page write current consumption is low thus can be used for
low power applications. Page write current consumption for
ReRAM is random in nature for writing different bits toggled
as shown in Fig. 2(d).

B. Current variation with aging

Page write current variation due to aging effect in CBRAM
NVM chips is shown in Fig. 3(a). It is observed that current
consumption increases with aging. One of the probable reasons
that describe the phenomenon of increase in page write current
consumption over cycling is the write-verify-write (WvW)
scheme for write operation. In WvW scheme step voltages
with increase in pulse width and voltage amplitude are applied
to increase the success rate of write operation [26]. WvW
scheme also increases the write latency. Significant results
have been observed for CBRAM technology. In order to
observe the WvW technique, write latency is also measured (as
shown in inset Fig. 3 (b)). The increasing trend of write latency
values over cycling supports the effect of aging. However, it

should be noted here that no significant change in current
consumption over cycling is observed for the other NVM
technologies (Toggle MRAM, FeRAM, and ReRAM).

C. Endurance Characterization
The data-sheet specified endurance of CBRAM chip is 100k

write cycles while the minimum write endurance for other
NVM technologies used for the study is 1.2× 106 cycles. We
focused our study on analyzing the nature and distribution of
bit errors that occur in NVM technologies due to over-stressing
a particular location. We select CBRAM chips for error
characterization at page and byte level granularity for ou study.
Fig. 4 (a) and (b), shows the distribution of nature of errors
occurred in a page and a byte level granularity respectively
for random data write operations performed over 200k cycles
(2X data-sheet specifications). It can be observed that the
distribution of error in a page is random. The total error count
for a particular byte in a page varies randomly. However,
the total count for 2-bit error in a page is more compared
to other types of bit errors. Moreover, higher bit errors (3-
bit, 4-bit, etc.) counts are few. The probable reason for this
specific nature of bit error is due to the implementation of
specific bit error ECC within the chip. We have implemented
Flip-N-Write (FNW) algorithm to analyze the effect of soft
techniques in reducing the nature of error. It is observed from
Fig. 5 that the implementation of FNW decreases the 2-bit
error by ∼ 6.54X and overall total error count by ∼ 5.4X.
Thus, based on the nature of error and the implementation
of soft techniques, the endurance of the NVM chips can be
increased significantly [27]. This analysis helps in designing
the soft/hard techniques like ECC within/next to the controller
to enhance the endurance of the emerging NVM chips.

IV. CASE STUDY: FPGA BASED NN APPLICATION

A. Methodology
In this section, we benchmarked the emerging NVM chips

for NN application using the proposed FPGA based test
platform. We focused on characterizing the weights’ write
latency and current consumption of the NVM chips for AI
applications. The NN model used for the study consists of
three layers: (i) input layer, (ii) hidden layer, and (iii) output
layer (Fig. 6 (a)). An RGB image (16×16×3 byte) is taken as
an input. Therefore, the input layer consists of 768 neurons,
where each neuron corresponds to a particular byte of the input
image. The hidden layer is composed of 7 neurons feeding to
a single output neuron. The neuron output from the hidden
layer to the output layer is described by:

y = g
∑n

j=1
aj × wj + b (1)

where n is the number of nodes in the previous layer, aj is the
activation output represented as an 8-bit unsigned integer, wj

and b is the weight, and bias respectively and are represented
by 8-bit signed integer. The activation function (g(x)) is a step
function described by:

g(x) =

{
0, x < 0
255, x ≥ 0

(2)



Fig. 6. (a) NN Model implemented on FPGA platform for characterizing
different NVM technologies. (b) Software GUI for uploading weights and
image for AI application.

Fig. 7. Block diagram of FPGA based setup for NN application using
emerging NVM.

TABLE I
LATENCY AND CURRENT COMPARISONS OF EMERGING NVM CHIPS WITH

FLASH AND SRAM TECHNOLOGIES FOR NN APPLICATION.

Memory Type Latency (a.u.) Current (a.u.)
Weights NN Average Average Byte
Write Application a Erase Write

Toggle MRAM 5.2x10−5 0.05 0 1

FeRAM 0.02 0.82 0 0.02

CBRAM 0.07 0.82 0 0.03

ReRAM 1 0.99 0 0.04

Flash 0.26 b 1 b 1 1

SRAM 5.2x10−5 0.05 0 1
a Latency value includes read latency from emerging NVM chips to BRAM

and NN computational latency.
b Latency value includes summation of erase and write operation together.

The network is trained using differential evolution (DE)
algorithm [28] for the dataset used in [29]. The algorithm is
suitable for network having integer weights, biases and non-
linear activation function [30]. The integer weights and biases
allow easier hardware implementation in FPGA.

B. Hardware Implementation

The hardware architecture, as shown in Fig. 7, is imple-
mented on CMOD FPGA [31] evaluation board. The main
difference between the FPGA based NN hardware architecture
and the experimental setup used for chip characterization is
the addition of NN engine with the former architecture. NN
engine is a generic engine that can be used to implement

multi-layer NN to predict the test image uploaded by the GUI
based software (Fig. 6 (b)). For our application, we implement
a 2-layer NN. Two internal block RAMs (BRAM) of the
FPGA are used to interact with the NN engine. We term
the BRAMs as image memory and weight memory (Fig. 7).
Image memory contains the scaled input RGB image. Weight
memory contains the trained weights and biases of each layer
of fully connected NN read from the NVM chip. Following
operations are performed while prediction of the test image
(i) Initially, the trained weights and the biases are uploaded
in the emerging NVM chips. (ii) The pixel values of the
input RGB image are uploaded in the image memory. (iii)
NN engine is started for image prediction. The NN engine on
initiation performs inference by reading the trained weights
and biases and loads it to the FPGA BRAM (weight memory)
for faster execution. Finally, it starts calculating the results
sequentially of each hidden neuron followed by an output
neuron to distinguish desired images from undesired images.

C. Experimental Results

Extensive experiments are performed to calculate weights’
write latency and current consumption of the NVM technolo-
gies while performing NN applications. Comparative study of
the NVM technologies with the state-of-art Flash technology
and SRAM is also performed. The DE algorithm used for
the application provides approximately 72.25 % accuracy on
the data set containing 209 images. During the initialization
phase, number of weight/bias byte write operations to NVM
chip is 5391 and number of image byte write operations
on FPGA BRAM is 768. Similar number of read operations
are performed after initiating the NN engine for test image
prediction. Table I illustrates the study of the write latency
and the electric current consumption using the proposed setup
for different memory technologies. It can be observed that
off-the-shelf emerging NVM chips are proficient candidates
for replacement of Flash and SRAM technologies.

V. CONCLUSION

The paper presents a unified FPGA based test platform for
characterizing different off-the-shelf emerging NVM technolo-
gies. Detailed electrical characterization and benchmarking
study for multiple NVM chips using the test setup is per-
formed. Current consumption due to different data patterns
and aging effect is analyzed on emerging NVM technologies
such as MRAM, FeRAM, ReRAM, and CBRAM. Moreover,
nature of error and the distribution of error are analyzed at
byte and page level granularity. Finally, the proposed test
platform is utilized for NN image classification application. A
comparative study of the emerging NVM chips with state-of-
art Flash and SRAM technology is performed. Obtained results
show that off-the-shelf emerging NVM chips are suitable
candidates for future memory applications.
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