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Abstract—Recently, the Edge Computing paradigm has gained
significant popularity both in industry and academia. Re-
searchers now increasingly target to improve performance and
reduce energy consumption of such devices. Some recent efforts
focus on using emerging RRAM technologies for improving
energy efficiency, thanks to their no leakage property and high
integration density. As the complexity and dynamism of applica-
tions supported by such devices escalate, it has become difficult to
maintain ideal performance by static RRAM controllers. Machine
Learning provides a promising solution for this, and hence, this
work focuses on extending such controllers to allow dynamic
parameter updates. In this work we propose an Adaptive RRAM
Variability-Aware Controller, AVAC, which periodically updates
Wait Buffer and batch sizes using on-the-fly learning models and
gradient ascent. AVAC allows Edge devices to adapt to different
applications and their stages, to improve computation perfor-
mance and reduce energy consumption. Simulations demonstrate
that the proposed model can provide up to 29% increase in
performance and 19% decrease in energy, compared to static
controllers, using traces of real-life healthcare applications on a
Raspberry-Pi based Edge deployment.

I. INTRODUCTION

With the rapid technology burst in the Internet of Things
(IoT) domain, the demands from Edge and Fog devices have
been continuously increasing [1]. Edge devices are becoming
more complex, expected to do more-and-more computations
in order to reduce the data to be sent through the transceiver;
thus reducing the bandwidth requirement, latency and energy
consumption. With the eventual goal of a completely indepen-
dent Edge node [2], designers are constantly making energy
specifications stricter for Edge devices [1]. Further, with
CMOS technology scaling to the deep sub-micron domain,
the leakage power has become comparable to the logic power
consumption [3]. To alleviate this problem, it is lucrative to
enhance the performance of such devices and then expect them
to quickly switch to the idle deep-sleep mode [4].

In that context, emerging Resistive Random Access Memory
(RRAM) technologies serve as a good candidate as opposed to
the traditional eFlash technologies, thanks to their non-volatile
operation, zero leakage, easy co-integration with CMOS pro-
cess, low programming voltage and fast switching [5], [6].
RRAMs find applications in novel system designs with non-
volatile cache and universal memories [7], [8]. These new
architectures can allow sufficient gains in performance and
energy, much needed for upcoming Edge/Fog devices.

One such architecture is the Static RRAM Variability-Aware
Controller (RRAM-VAC) proposed by S. Tuli et al. in [9]. To
tackle the problem of high device-to-device and cycle-to-cycle
temporal variability in RRAMs (which can be up to several
decades [10]), the Static RRAM-VAC utilizes the recently
proposed Write Termination (WT) circuits [11]. Thanks to
their capability of dynamically detecting and stopping the
programming operation once the device has switched, the
Static RRAM-VAC can coalesce multiple write operations
before triggering the write request. Thus, it can average out the
temporal write-time variability and effectively run the system
at the memory programming time distribution mean rather than
the worst case tail. However, with a fixed and rigid architec-
ture, the Static RRAM-VAC is not robust and adaptive enough
to accommodate widely varied and unpredictable memory
trace patterns in developing complex Edge/Fog devices.

Hence, in this work we propose a Machine Learning (ML)
based approach to dynamically tune operation parameters so
as to maximize performance and limit energy requirement
at all times of operation. For this, we characterize different
Wireless Body Sensor Node (WBSN) applications, a typical
candidate for large amount of critical data which needs to
be processed timely, securely and efficiently. We exploit a
polynomial regression technique to model the operation pa-
rameters, namely the Wait Buffer and batch sizes with the
performance and energy gains. We then apply gradient ascent
method to maximize the gains dynamically, thus providing up
to 94% performance gains (up to 29% more than the Static
RRAM-VAC) and up to 99% energy gains (up to 19% more
than the Static RRAM-VAC) on traces of real-life healthcare
applications, including the HealthFog [12], [13] framework.

The rest of the paper is organized as follows. Section II
presents the Static RRAM-VAC operation and the Machine
Learning technique used. Section III shows the proposed
AVAC architecture. Section IV describes the RRAM technol-
ogy assumptions and experimental setup used for simulations.
Section V compares the gains of the Adaptive over the Static
RRAM-VAC. Finally, Section VI concludes the paper.

II. BACKGROUND

A. The Static RRAM-VAC

The Static RRAM Variability-Aware Controller (RRAM-
VAC) proposed in [9] stores the write requests and locks them
to form a batch. This batch is then written to an RRAM using
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Fig. 1. Proposed Adaptive RRAM-VAC (AVAC) Block diagram

the “Write Coalescing” method - as part of a single operation,
writing the next bit as-soon-as the previous one is finished
[9]. This allows it to effectively interact with a synchronous
processor and write to the RRAM asynchronously, further
enabling the system to run at the mean of the switching-time
distribution rather than at the worst-case tail.

Functionally, the Static RRAM-VAC uses a Wait Buffer and
a Read Buffer. The Wait Buffer is implemented as a Binary
Content Addressable Memory (BCAM) [14] of a fixed size.
The locked batch is a part of the Wait Buffer and cannot catch
read requests. On the other hand, the rest of the Wait Buffer
can still catch both read and write requests. Read requests are
first sent to the Wait Buffer. If the corresponding address is not
present in the Wait Buffer, the request is issued to the RRAM.
If a locked batch is in process, the read request is stored in
the Read Buffer where it waits until the RRAM is available.

However, the given system has a fixed size of the Wait
Buffer and batch, optimally dependent on application patterns
[9]. With the increasing complexity of Edge/Fog workloads,
there is a need to dynamically tune the Wait Buffer and
batch sizes in order to enhance energy and performance.
Moreover, these workloads correspond to real-life applications
and continuously engage with unpredictable service demands
and tasks. This makes prediction of optimum buffer and batch
sizes difficult. Thus, in this work, we propose an on-the-fly ML
based approach of dynamically tuning these sizes in order to
maintain the best performance and energy characteristics.

B. Machine Learning models

The proposed AVAC model uses polynomial regression [15]
and gradient ascent [16]. The former provides a way to ap-
proximate a function with input as a multidimensional vector,
characteristic to the application and the current Wait Buffer
and batch sizes. We use this to approximate the expected
performance and energy gains and determine a cumulative
reward as described in Section III-C. We then use gradient
ascent to iteratively update the Wait Buffer and batch size
pair, in order to optimize this reward function.

III. ADAPTIVE RRAM-VAC ARCHITECTURE

This section gives a functional description of AVAC.

A. Dynamic Buffer Size

Figure 1 presents a detailed block diagram of the proposed
AVAC. As explained in Section II-A, the controller fetches the
read/write requests from the processor and stores them to the
Wait Buffer (for a write request) or the Read Buffer (for a
read request). The “locked” batches are written employing the
“Write Coalescing” technique. However, in this architecture,
the Wait Buffer is larger in size and we can dynamically
switch off certain Write-Lines based on the requirement. This
allows us to change the effective Wait Buffer size that is being
used at any given time. The power-gating reduces leakage in
applications where a large size is not needed, since it shuts off
the current to these cells. On the other hand, for applications
with very low data locality, we can optimize performance by
increasing the Wait Buffer size, since that would better average
the variability in write times.

Further, the whole Wait Buffer can be connected to the
RRAM block via a wide bus. We can dynamically tune the
batch size by varying the number of words written at a time.
Higher variability (σ) of the distribution requires a larger batch
size. Moreover, the optimum batch size also depends on the
Wait Buffer size [9].

B. Feature Extraction

The optimum Wait Buffer and batch sizes and the possible
performance and energy gains are dependent on the memory-
trace features, as introduced in Section II-A. These features
represent the application memory access patterns. They are
extracted in the AVAC by the “Feature Extractor” as shown in
Figure 1. The set of all the 8 features, with the current Wait
Buffer size (W ) and batch size (B) forms a 10 dimensional
feature vector. The 8 features extracted are as follows:

1) Read/Write ratio: Large number of reads requires a small
batch size, so that read requests do not have to wait for
a long time for the batch to flush out to the RRAM. If
the read locality is high, then a small Wait Buffer can
also lead to performance gains (reading from the Wait
Buffer is less expensive than from the RRAM block).

2) Read locality: As explained above, high read locality
would benefit from a small Wait Buffer. If the locality is
low, the application would demand a larger Wait Buffer.

3) Write locality: Again, high write locality would benefit
from a small Wait Buffer just as the reads above.

4) Mean Read burst size: For a series of small read bursts,
the Wait Buffer will have to wait frequently for the Read
Buffer to clear out, thus not allowing it to flush out its
write requests so as to catch the next write instruction.

5) Mean Write burst size: While the batch is being written
to memory, the next read request that cannot be pro-
cessed inside the Wait Buffer is stored in the Read Buffer
and the processor is stalled, compromising performance.

6) Mean Read repetition: The read locality only targets
the variance in the read request addresses. The peak of
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Fig. 2. Performance gains (a) actual, and model with degree - (b) 3 and
(c) 5. Energy gains (d) actual, and model with degree - (e) 3 and (f) 5.

the distribution can be represented by the mean of the
repetition for each read address.

7) Mean Write repetition: Similar to the case of read
repetition, higher write repetition would result in higher
energy gains by accesses from the Wait Buffer.

8) Variation in bit-changes for writes: By this feature, we
mean the number of changes in bit written to a particular
address (0 to 1 or 1 to 0). The Write Coalescing strategy
works best if the variability in writes can be averaged
out. However, for example, if the writes to addresses are
of the form 0x00000000 to 0x0000000F, then the LSB
will always have higher write times than the other bits,
thus reducing the gains of a higher batch size.

C. Polynomial model and parameter optimization

The complete feature vector, calculated for a fixed num-
ber of memory accesses in 10 dimensions, is given to two
polynomial-fit based models: Performance Gains (PG) and
Energy Gains (EG). We empirically find 1000 to be the
best interval size (SI ), and propose to test with other and
dynamic SI values as part of future work. Each model is an
approximator that maps the 10 dimensional feature vector (fv)
to the corresponding performance and energy gains (pg and
eg). At training time, we generate multiple data-points {fv(j),
pg(j), eg(j)}Nj=1 for different applications with buffer size
∈ [1, 120] and batch size ∈ [1, 80]. This training data is then
used to perform polynomial regression and generate model
parameters for PG and EG. The applications were chosen to
cover a large space of feature vectors.

At testing time, for every memory trace of last 1000
accesses at time ti, the trace feature vector is coupled with the
current (at time ti) buffer size (Wi) and batch size (Bi) to form
a vector of size 10 which is sent to the two polynomial models
that output pgi and egi. These are then used to calculate the
reward (ri) as convex combination α · pgi + β · egi where the
weights α and β (α + β = 1) can be changed based on user
requirements targeting either optimal performance or energy
(experiments in this work use α = 0.1 and β = 0.9 to prioritize

energy reduction). This whole pipeline is run multiple times by
changing buffer and batch sizes to achieve maximum reward
using gradient ascent. For the current model, we used learning
rate as 0.01 with 0.9 momentum. This gives the (Wi+1,Bi+1)
tuple which maximizes the reward (keeping area minimum)
and is used for the next interval till ti+1. Figure 2 shows
actual performance and energy gains with polynomial models
of degree 3 and 5. With higher degree, outputs are closer to
actual values but require more model parameters (AVAC uses
degree 5 models). Finally, the Wait Buffer and batch sizes were
fixed to 80 and 10 respectively for the Static RRAM-VAC [9].

IV. EXPERIMENTAL SETUP

This section discusses the basic setup, energy and speed
assumptions, with biomedical applications and generic bench-
marks. The simulations were performed on MATLAB.

A. Energy and Speed Assumptions
For a programming voltage of 1V to 1.5V, programming

time of a few tens of nano-seconds can be achieved [5]. Hence,
we have assumed a 50 ns worst-case programming time at
a programming voltage of 1V. 100 µA programming current
has been assumed for a high ratio of resistance between the
High Resistance State (HRS) and the Low Resistance State
(LRS) and for several years of memory lifetime [5]. We take
a normal distribution of programming time with the mean
(µ) at 25 ns and a variance (σ) of 5 ns [9]. The AVAC
model can be further extended to account for ageing and
corresponding variation in the distribution. As explained in
[9], energy characterization is done for every bit as an integral
(V

∫
I · dt) taking into account the shift in the current (I)

for every stochastic transition (HRS to LRS or vice-versa).
WT circuit switching detection time is taken to be 1 ns [9].
The read energy is considered as 1 pJ per bit [17]. Scaling
down CMOS technology has led to increase in leakage power,
primary concern in low-power circuits. The leakage current
(for 1V programming voltage) can go as high as 15nA per
bit cell (and even higher in some cases) in the current deep-
submicron nodes [18]. This leads to a leakage gain of 480nW
per word-line of 32 bits (switching them off dynamically
when not needed) in the proposed approach. Implementation of
AVAC models described in Sections III-B and III-C on Artix-7
FPGA shows that it has 0.278% energy overhead compared to
a 4GB RRAM, which is negligible [19].

B. Applications and Benchmarks
Experiments were performed on different applications rele-

vant to Edge devices in the biomedical domain. These include
Compressed Sensing (CS) for an Electro-Cardiogram (ECG)
signal, Feature Extraction (FE) and Decision Tree (DT) in
Epilepsy seizure detection algorithm, with Matrix Multiplica-
tion (MM) and Convolution (Conv) as two kernels [20], [21]
as used in [9]. DT C is the DT application post-processed with
an L1 cache of 16 words. We also use Sysbench CPU [22] and
Apache [23] to further increase the diversity of applications.
All benchmarks traces were extracted on Raspberry-Pi 4 and
used to fit the polynomial models PG and EG.
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V. EXPERIMENTAL RESULTS

Figure 3 compares the energy and performance gains for the
Static and the Adaptive RRAM-VAC with the reference case
not using the RRAM-VAC. These gains can be explained by
comparing the model parameter optima, i.e the optimal values
of the tuple (W , B) for different applications, with that of the
Static RRAM-VAC - (80, 10). For the applications CS and
FE, the parameter optima ((80, 60) and (70, 50) respectively)
were quite close to that of the Static RRAM-VAC, giving
only about 2% more gains in energy compared to the Static
case. The CS and FE have low locality of addresses, and a
low read/write ratio. Since the parameters for Static RRAM-
VAC were decided based on writes to random addresses
[9] (implying a low locality and zero read/write ratio) these
memory traces are quite close to the assumed one in the
Static RRAM-VAC. Still, CS gains a little in performance
owing to a larger batch size (averaging the variability in write
times). However, MM and Conv show little dependence of
the parameters on the gains, with their respective optima at
(10, 10) and (80, 80). This is due to the fact that both have
balanced read/write ratios. In MM, AVAC reduces leakage
power by reducing the Wait Buffer size as locality is low, since
a larger Wait Buffer does not provide significant advantage.
On the other hand, Conv has high gains both in the Static and
Adaptive RRAM-VAC and benefits from a large Wait Buffer
to reduce energy of read and write accesses.

AVAC provides high gains in DT, DT C and FE+DT,
with their respective model optima at - (30,30), (60,60) and
(50,50). DT shows maximum improvement in energy gains-
89% higher than the Static case. With otherwise low locality
but high address repetition, these applications perform better
with a smaller Wait Buffer. This can be explained by high
read/write burst size and high address repetition. Sysbench
shows high gains with the model optimum at (30,30) due to
high read/write locality. On the other hand, Apache has similar
optimum at (70,50) as the Static case, due to low read/write
locality. Both benefit with a larger batch size, providing 3%
higher performance gains compared to the Static case.
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To demonstrate efficacy of AVAC, we further show the
performance and energy gains for a real-life Edge appli-
cation called HealthFog [12] which provides high accuracy
healthcare services using ensemble deep learning. Figure 4
shows the application running in 3 major stages: (T1) the
program performs large number of ECG read operations and
shares data in real-time with sensors and actuators; (T2) the
program performs task scheduling and migration decisions
for minimum service-level-agreement violations [2]; (T3) the
program utilizes ensemble deep learning based methods to
evaluate the data and generate results like health analysis and
automated prescription generation. Gains in static and adaptive
cases are same in T1 due to only-read operations. T2 has
large number of convolution operations giving high energy
gains in both the Static and Adaptive cases, compared to the
reference. Further, T3 has many MM-like operations and also
bootstrapping processes similar to those in the DT, leading to
higher gains (29% performance and 19% energy). Also, Figure
4 highlights how the proposed ML-based model can adapt to
shifts in memory access patters to instantly enhance gains.

VI. CONCLUSIONS

In this work, we proposed the Adaptive RRAM Variability-
Aware Controller (AVAC), which uses Machine Learning (ML)
techniques to dynamically configure the Wait Buffer and
the batch sizes. This not only mitigates the device-to-device
variability in RRAMs, but also further optimizes performance
and energy dependent on the memory access patters. Gains
were simulated for different applications in the Edge/Fog
environment, and compared to the Static RRAM-VAC with
fixed Wait Buffer and batch sizes. With the considered RRAM
technology, AVAC provides up to 94% gains in performance
(up to 29% more than the Static case) and up to 99% gains in
energy (up to 19% higher than the Static case). The model can
dynamically tune operation parameters in complex and varied
Edge and Fog applications to maintain the best performance
and energy at all times. Other ML models, with dynamic
interval sizing can be investigated as part of future work.
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