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Abstract—Intellectual Property (IP) theft is a serious concern
for the integrated circuit (IC) industry. To address this concern,
logic locking countermeasure transforms a logic circuit to a
different one to obfuscate its inner details. The transformation
caused by obfuscation is reversed only upon application of the
programmed secret key, thus preserving the circuit’s original
function. This technique is known to be vulnerable to Satisfia-
bility (SAT)-based attacks. But in order to succeed, SAT-based
attacks implicitly assume a perfectly reverse-engineered circuit,
which is difficult to achieve in practice due to reverse engineering
(RE) errors caused by automated circuit extraction. In this paper,
we analyze the effects of random circuit RE-errors on the success
of SAT-based attacks. Empirical evaluation on ISCAS, MCNC
benchmarks as well as a fully-fledged RISC-V CPU reveals that
the attack success degrades exponentially with increase in the
number of random RE-errors. Therefore, the adversaries either
have to equip RE-tools with near perfection or propose better
SAT-based attacks that can work with RE-imperfections.

Index Terms—IP-Theft, Logic-Locking, Satisfiability-Based At-
tacks, Reverse-Engineering Errors

I. INTRODUCTION

Logic locking has been proposed to mitigate hardware IP-

theft, which is a serious concern for the IC industry [1]–

[17]. Logic locking is, unfortunately, known to be vulnerable

to Satisfiability (SAT)-based attacks [18]–[28]. But all SAT-

based attacks assume a perfectly reverse-engineered circuit.

This assumption may be invalid if the adversary purchases

the IC from the open market, captures images and uses

machine learning for automated circuit extraction, which is

error prone [29]–[31]. There is, however, no prior work on

evaluating the impact of reverse-engineering (RE) errors on

attack accuracy. In this paper, for the first time, we analyze and

quantify the effect of such errors. The primary contributions

of the paper are as follows:

• We propose an error model for RE and evaluate the

attack accuracy for single as well as multiple random

error scenarios.

• We identify different error scenarios which can and

cannot be canceled out by applying the suitable key.

• Using benchmarks as well as a RISC-V CPU, we quan-

tify the impact of RE-errors on the attack accuracy.

• Surprisingly, we unveil that in the presence of errors,

increasing logic locking amount can reduce the security.

Our research reveals that SAT-attacks can fail even if there is

a single RE-error, but there may be cases of attack success with

a reasonably high error count. The conclusions of our paper

is threefold. First, the RE tools typically need high accuracy

for attacking logic locking. Second, end-user adversary needs

better SAT attacks to work with RE-errors. Third, in majority

of the cases adding more locks to the circuit increases attack

success (reduces the security-level) in the presence of errors.

II. SATISFIABILITY-BASED ATTACK

SAT-solvers find the inputs to a Boolean expression such

that the expression evaluates to true. The adversary can thus

formulate the locked circuit obtained through RE as a Boolean

expression and use Boolean SAT-solvers to find a secret key

for the given input-output pairs. The fundamental challenge is,

however, to extract the secret key by observing a limited set

of input-output pairs. Therefore, straightforward SAT-solver

usage is ineffective—although it returns a key, the key may

only satisfy the limited set and not guaranteed to satisfy input-

output pairs outside this set. SAT-attack solves this problem

by two intuitions.

First, unlike cryptographic constructions, the secret key

itself may not be unique, causing multiple keys to form

equivalence-classes that would generate identical input-output

pairs. Second, a wrong-key equivalence-class can be pruned

off by determining the distinguishing input pattern (DIP), a

certain input pattern which produces different outputs for two

keys from two different equivalence classes. As a result, the at-

tack aims to perform a brute-force search on key equivalence-

classes, which is more efficient than performing brute-force

search on individual keys.

The attack at a high-level works as follows. The adversary

reconstructs the locked netlist through RE and formulates the

circuit as a SAT-instance to find the DIPs. The adversary then

gets an activated chip from the market that can generate valid

input-output pairs. This chip is referred to as the oracle. The

adversary applies the DIP to the oracle and records the output.

The DIP-output pair is used to prune-off wrong equivalence

class(es) of keys by updating the SAT-instance. The process

continues until there is only one equivalence class left, which

has to be the equivalence class of the correct keys.

Now we formally describe the attack. Let the reverse-

engineered locked circuit be C( ~X, ~K, ~Y ), which has input

vector ~X and output vector ~Y , and which is locked with key

http://arxiv.org/abs/2005.13048v2


Algorithm 1: SAT-based Logic Decryption Algo-

rithm [18]

Input: C and eval

Result: ~Kc

i := 1;

F1 = C( ~X, ~K1, ~Y1) ∧ C( ~X, ~K2, ~Y2);

while sat[Fi ∧ ( ~Y1 6= ~Y2)] do
~Xd
i
= sat assignment ~X[Fi ∧ ( ~Y1 6= ~Y2)];

~Y d
i
= eval( ~Xd

i
);

Fi+1 = Fi ∧ C( ~Xd
i
, ~K1,

~Y d
i
) ∧ C( ~Xd

i
, ~K2,

~Y d
i
);

i := i+ 1;

end
~Kc = sat assignment ~K1

(Fi);

vector ~K . Let the locked circuit has M input bits and L gates.

Algorithm 1 shows the SAT-attack in detail, where i signifies

the iteration number. F1 is the initial SAT-instance and Fi is

the SAT-instance in the ith iteration. Each step of the algorithm

is defined as follows:

Step 2: Formulates the SAT-instance as two copies of the

locked circuit C( ~X, ~K1, ~Y1) and C( ~X, ~K2, ~Y2) with same

input ~X but different keys ~K1, ~K2 and different outputs ~Y1,
~Y2. In the next step, this formulation is exploited to generate

different keys that produce different outputs.

Step 3: Checks if the there are at least two different equiv-

alence classes that satisfy the current SAT-instance. If this

condition is satisfied, it enters the loop, otherwise terminates

the loop;

Step 4: Runs the SAT-solver on the current SAT-instance.

From the returned SAT assignment { ~X, ~K1, ~Y1, ~K2, ~Y2}, this

step also extracts the DIP for ith iteration, denoted as ~Xd
i

,

Step 5: Evaluates the oracle output for ~Xd
i

, denoted as ~Y d
i

.

Step 6: Adds corresponding DIP-output constraints to the

SAT-instance (C( ~Xd
i
, ~K1,

~Y d
i
)∧C( ~Xd

i
, ~K2,

~Y d
i
)) to eliminate

wrong-key equivalence-class(es) for the ith iteration.

Step 9: Executes the SAT-solver on the SAT-instance after

loop termination and extracts ~K1 from the returned SAT-

assignment { ~X, ~K1, ~Y1, ~K2, ~Y2}. Since the while condition

in line 3 fails if and only if there is a single equivalence

class left, ~K1 is guaranteed to be functionally correct, i.e.,
~Kc = ~K1. This is a unique property of SAT-attack, which

preempts verification. Otherwise even if the attacker finds

the correct key, the verification step needs checking outputs

for all possible 2M input patterns, which is computationally

infeasible for large circuits.

III. ANALYZING THE IMPACT OF RE-ERRORS

The errors in the circuit RE can cause decryption to return

the wrong keys, that is otherwise guaranteed to return the

correct ones. This section analyzes the effects of the RE errors

by describing the SAT-instance formulation by using a toy

example.

TABLE I
FORMULATING LOGIC GATES AS CNF FOR SAT-ATTACK

Logic gate Boolean clauses

z = or(x1, x2)
(

x1 + z
)

.
(

x2 + z
)

.
(

x1 + x2 + z
)

z = and(x1, x2)
(

x1 + z
)

.
(

x2 + z
)

.
(

x1 + x2 + z
)

z = nand(x1, x2)
(

x1 + z
)

.
(

x2 + z
)

.
(

x1 + x2 + z
)

z = xor(x1, x2)
(

x1 + x2 + z
)

.
(

x1 + x2 + z
)

.
(

x1 + x2 + z
)

.
(

x1 + x2 + z
)

a

b
c

(a) Original Circuit

k

a

b

c

(b) Locked Circuit

k

a

b

c

(c) RE-error: Insecure

k

a

b

c

(d) RE-error: Secure 

k

a

b

c

(e) RE-error: Secure
(Incorrect key) (UNSAT)

dd d d

Fig. 1. Motivational example to analyze impact of RE-errors

SAT-solvers require inputs organized in a special format,

called the conjunctive normal form (CNF), such that the

expression evaluates to true. Table I shows an example for the

CNF formulation of or, and, nand, and xor gates. Figure 1

(a) shows a 2-bit input 1-bit output sample circuit. This

Boolean function takes a, b as inputs and computes c = a.b.

Figure 1 (b) shows the corresponding locked version with

random insertion [1] of 1 xor-type key-gate (shown in red).

Note that the correct key in this case is ‘1’. Equations 1 and 2

show the conversion of the locked circuit to SAT-instances

C( ~X, ~K1, ~Y1) and C( ~X, ~K2, ~Y2) respectively using Table I,

where C(.), the portion in black corresponds to the and gate

and the portion in red corresponds to the xor key-gate.

C( ~X, ~K1, ~Y1)=

[

(a+d1)(b+d1)(a+ b+d1)(d1 +k1+ c1)

(d1 + k1 + c1)(d1 + k1 + c1)(d1 + k1 + c1)

]

(1)

C( ~X, ~K2, ~Y2)=

[

(a+d2)(b+d2)(a+ b+d2)(d2 +k2+ c2)

(d2 + k2 + c2)(d2 + k2 + c2)(d2 + k2 + c2)

]

(2)

Equations 1 and 2 are used to generate F1 in step 2 of the

algorithm. Subsequently, in the first iteration, step 4 of the

algorithm returns {a, b, k1, k2, c1, c2}={000101}, thus the first

DIP is ~Xd
1={a, b}=00 and the corresponding oracle response

is ~Y d
1 =0.0=1. Substituting ~Xd

1 and ~Y d
1 in step 6 yields:

F2 = F1 ∧ (d1 ⊕ k1) ∧ (d2 ⊕ k2) (3)

.

Using equation 3 in second iteration, the while loop in step

3 fails, because F2 ∧ (c1 6= c2) is unsatisfiable. Thus, the loop

terminates and running the SAT-solver on F2 (step 9) gives
~Kc=1, which makes the locked circuit’s Boolean function

(a.b) ⊕ ~Kc=(a.b)⊕ 1=a.b. Thus, ~Kc is functionally correct,

in the absence of RE-errors. The SAT-attack is able to find the

correct key with just one DIP for this toy circuit.



A. RE-Error Model

In this paper, we assume only RE-errors for 2-input logic

gates. Since the possibilities are xor, xnor, nand, nor, and

and or, we consider the possible RE-errors as the possible

interpretation errors between the candidate choices within

this list. For example, a 2-input nand gate within original

netlist could be erroneously reverse-engineered as one of the

candidates within the list {nor, xor, xnor, and, or}. If, e.g.,

it was erroneously reverse-engineered as and, we refer to it

as nand → and type RE-error. To cover all possible cases,

we also assume that the errors can occur randomly.

Even with RE-errors, the attack can return a functionally

correct key. We term them as “RE-errors not improving the

security”. By contrast, for certain RE-errors (1) the attack can

return a functionally incorrect key; or (2) the SAT-instance

could be unsatisfiable (the SAT-solver returns UNSAT). We

term them as “RE-errors improving the security”. Next, we

discuss each of these categories in more detail.

B. RE-errors not improving the security

Case 1: Figure 1 (c) shows a locked circuit with and → nand

type of RE-error with the faulty gate shown in blue. For this

case, all the steps explained in the absence of error remains

the same, except that in the last step, the algorithm returns
~Kc=0, which makes the locked circuit Boolean function

(a.b)⊕ ~Kc=(a.b)⊕ 0=(a.b). Thus, ~Kc is functionally correct

and the RE-error is absorbed by the key, thus making the

attack successful despite the error. This is an example of RE-

error that does not improve the security.

C. RE-errors improving the security

Case 2: Figure 1 (d) shows a locked circuit with and → or

type of RE-error, with the faulty gate shown in blue. In this

case,

F1=

[

(a+ d1)(b + d1)(a+ b+ d1).(d1 + k1 + c1)

(d1 + k1 + c1)(d1 + k1 + c1)(d1 + k1 + c1)

]

∧

[

(a+ d2)(b + d2)(a+ b+ d2)

.(d2+k2+ c2)(d2+k2+ c2)(d2+k2+ c2)(d2+k2+ c2)

]

(4)

Using equation 4 in the first iteration, step 4 of the al-

gorithm returns {a, b, k1, k2, c1, c2}=000101, thus the first

DIP is ~Xd
1={a, b}=00 and corresponding oracle output is

~Y d
1 =0.0=1. Substituting ~Xd

1 and ~Y d
1 in step 6 yields:

F2 = F1 ∧ (d1.k1) ∧ (d2.k2) (5)

.

Fig. 2. Flow-chart for attack simulation with multiple-errors

Using equation 5 in the second iteration, the while loop

in step 3 of the algorithm fails, because F2 ∧ (c1 6= c2) is

unsatisfiable. Thus, the loop terminates and running SAT-

solver on F2 (step 9) gives ~Kc=1, which makes the locked

circuit’s Boolean function (a+b)⊕ ~Kc=(a+b)⊕1=a+ b 6=a.b.

Thus, ~Kc is functionally incorrect. This is an example of

RE-error that improves the security.

Case 3: Figure 1 (e) shows and → xor type of RE-error,

with the faulty gate shown in blue. In this case, the SAT-attack

returns UNSAT. The while loop in logic decryption algorithm

terminates after first iteration because there is no key that

satisfies both the original circuit as well as the DIP. This is

another example of an RE-error that improves the security,

because the attacker is unable to decipher the correct key.

D. The Causes of the Different Cases

The causes for different cases (correct-key, incorrect-key, UN-

SAT) for the attack with RE-errors is three-fold:

• The DIPs ( ~Xd
i

) are generated for the locked circuit, which

is erroneous;

• The Outputs (~Yi) are evaluated on the oracle, which

provides correct outputs; and

• The locked (erroneous) circuit is constrained to satisfy

the { ~Xd
i
, ~Y d

i
} pairs.

Because of these contradictory constraints, unlike the no-

error case, in the erroneous case the algorithm is not guar-

anteed to return functionally correct key. As a result, in

some cases it returns UNSAT and in some cases functionally

incorrect key. This motivates us to understand the likelihood

of the attack success, in terms of the number of cases in which

the attack fails than otherwise, in single as well as multiple

error scenarios. We therefore perform extensive experiments to

evaluate the attack accuracy for wide range of error scenarios.

IV. EVALUATING THE IMPACT OF RE-ERRORS

Figure 2 shows the flow used to simulate SAT-attack. The

only difference between conventional flow and this flow is

the replacement of perfectly reverse-engineered circuit with

erroneous reverse-engineered circuit. If the circuit has L gates,



TABLE II
EVALUATION OF ATTACK-SUCCESS FOR VARIOUS SINGLE

REVERSE-ENGINEERING ERRORS (N = 1)WITH 5% LOGIC-LOCKING.

Benchmark nand → xor → xor → xor → xnor → xnor → and →

nor nor xnor nand nand nor or

apex2 0% 71% 100% 71% 59% 13% 0.3%
apex4 0% 47% 100% 47% 53% 53% 0.1%
i4 0% 50% 100% 50% 57% 57% 0%
i7 0% 56% 100% 54% 61% 61% 0%
i8 0% 38% 100% 38% 56% 56% 0.1%
i9 0% 56% 100% 56% 36% 36% 0%
seq 0% 53% 100% 53% 52% 54% 0.1%
k2 0% 37% 100% 37% 57% 57% 0%

ex1010 0% 56% 100% 56% 58% 58% 0%
dalu 0% 47% 100% 48% 62% 64% 3.3%
des 0% 50% 100% 51% 56% 56% 0.1%
c432 0% 9% 22% 87% 67% 67% 0%
c499 0% 2% 38% 2% 29% 29% 0%
c880 0% 63% 100% 53% 64% 64% 0%
c1355 0% 46% 100% 46% 38% 38% 0%
c1908 0% 53% 100% 53% 68% 68% 0%
c2670 2% 48% 100% 48% 54% 54% 2.1%
c3540 7% 53% 100% 49% 50% 50% 0%
c5315 0% 35% 100% 35% 48% 48% 0%
c7552 1.1% 54% 100% 58% 53% 91% 0.3%
RISC-V 0.2% 27% 59% 27% 35% 35% 0.1%

then by definition we are allowed to inject at most L errors. We

inject N ≤ L random RE-errors (multiple-error scenario), run

the SAT-attack and subsequently perform formal-equivalence-

checking if the result is satisfiable). The SAT-attack is recorded

as failed for the cases when the result is UNSAT or when

satisfiable but the decrypted key makes the locked circuit

formally different from the original circuit. Otherwise it is

recorded as successful. We run this procedure for K random

multiple-error scenarios and record the statistics.

A. Evaluation Strategy for Single and Multiple Errors

To systematically understand the impact of errors on the

attack accuracy, we first begin with single reverse-engineering

errors. We exhaustively try all gates as candidate choices, since

the total simulation time is linear in the circuit size.

Coming to multiple-errors, it is not possible to exhaust

all possibilities because given an L-gate circuit, total num-

ber of possible multiple-error scenarios (combinations) is
(

L

2

)

+
(

L

3

)

. . .
(

L

L

)

= 2L − L − 1. Since this function grows

exponentially with L, it is not practically feasible to exhaus-

tively evaluate all possible multiple-error scenarios for large

industrial-strength circuits. Thus, we evaluate attack accuracy

on a subset of random multiple-error scenarios.

B. Evaluation Results

IBM BladeCenter® High-Performance Cluster (HPC) dual-

core nodes with 8GB memory, single-threaded execution and

abort limit of 1 week, are used for all the runs. For each

value of N (#RE − errors), the experiments took 1 week.

We have tried for 8 values of N (2, 3, 4, 5, 6, 7, 8, 16), so

it took altogether 8 weeks of compute time on the HPC.

Table II shows the exhaustive results for single RE-errors

for 8 different types of RE-errors based on the error-model

described in Section III-A. We define % Attack Success as
#insecure cases

#secure cases+# insecure cases
.

2 4 6 8 10 12 14 16
0
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30

# RE-Errors

%
A
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k
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u
cc

es
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i4 i7
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ex5 ex1010

dalu des

c432 c499

c880 c1355

c1908 c3540

c5315

Fig. 3. Increase in attack success with increase in RE-errors. 25% logic-
locking and K = 1000 are used for the evaluation.
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Fig. 4. Increase in %Attack Success with %Logic-Locking for k2 circuit.

This table shows that the attack success is a function of

the type of RE-error. For e.g: for xor → xnor type RE-error,

attack success is 100% for most benchmarks, because the only

manifestations in those cases were xor-type key gates, which

the SAT-solver tolerates by flipping the corresponding key-bit

(which is not possible for the remaining 7 types of RE-errors).

On the contrary, for nand → nor and and → or types of RE-

errors, attack success was close to 0% for most benchmarks.

For remaining types of RE-errors, the attack success was

somewhere in between these two extremes.

Figure 3 illustrates the attack success for the different values

of N (X-axis) with 25% logic-locking and K = 1000. This

plot shows exponential degradation in attack success with

linear increase in N . The 25% logic-locking of RISC-V CPU

using sle software [32] itself exceeds the abort limit, hence not

reported. Figure 4 shows the attack success as a function of

%logic locking. Although there is no clear trend, there is a

general increase in attack success with increase in key-size.

This is counter-intuitive, because we expect the attack success

to degrade with increase in the key-size.

C. Evaluating the Error-Removal Attack

Attack failure is registered if the SAT-instance if unsatisfi-

able or if satisfiable but the decrypted key verified incorrect

through functional execution. In either case, the attacker’s

next step would be to remove RE-errors and reconstruct

the original circuit. However, the attacker is unaware of the



number/locations/error-scenario, so he is forced to perform

brute-force checking. If there are m possible error choices for

each gate and k RE errors, the number of possibile locations is
(

L

k

)

.(mk). Coming to the number of errors, k can range from

1 to L. So, total number of possibilities is
∑L

k=1

(

L

k

)

.(mk).

We know that
∑L

k=1

(

L

k

)

= O(2L), hence the complexity of
∑L

k=1 m
k.
(

L

k

)

is either similar or better than this. Thus error-

removal and reconstruction is infeasible for large circuits.

V. CONCLUSIONS

In the logic-locking threat model, the adversary may not be

the foundry itself but an end-user purchasing the IC from the

open market. This paper analyzes such an end-user adversary,

who needs to deal with errors when doing RE of the IC. We

quantify the efficacy of SAT-based attack in the presence of

RE-errors and identify the underlying reasons as to why it

can/cannot succeed. Empirical results suggest dependence of

the attack success on the type of RE-error and exponential

degradation of attack success with error count. Surprisingly,

in most cases the attack success increases with increase in

key-size.
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