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RNN-Based Detection of Fault Attacks on RSA
Troya Çağıl Köylü, Cezar Rodolfo Wedig Reinbrecht, Said Hamdioui, Mottaqiallah Taouil

Computer Engineering, Delft University of Technology
Delft, the Netherlands

Abstract—Physical fault injection attacks are becoming
an important threat to computer systems, as fault injec-
tion equipment becomes more and more accessible. In this
work, we propose a new strategy to detect fault attacks in
cryptosystems. We use a recurrent neural network (RNN)
to detect problems in the program flow caused by injected
faults. Our neural network is trained using the instructions
of non-faulty operations and therefore, it can protect against
both current and future attacks. As a case study, we use two
implementations of software RSA. To test the effectiveness
of our detector, we propose a collection of fault injection
models, where each model represents different types of faults
in the instructions. Evaluation results show that we obtain a
high detection accuracy in case injected faults lead to changes
in the instruction flow and hence, making it difficult to
steal secrete keys. Finally, we propose an efficient hardware
implementation with only a 6% area overhead compared to
a RISC-V processor.

I. INTRODUCTION

Faults affect the integrity of hardware and hence their
impact should be investigated [1]. In the past, a lot of
research has been conducted against faults caused by
radiation, such as single upset events [2], [3]. Nowadays,
attackers have the ability to create such faults artificially
in a controlled environment [4], [5]. The target of such
attacks is to disrupt the functionality or steal secret
data such as keys. Simple techniques such as voltage
underfeeding [6] and heating [7] are occasionally enough
to achieve these malicious goals. If not successful, more
complex means can be used such as EM waves or
lasers [8]. Moreover, many researches have identified
weaknesses in the implementation of cryptographic al-
gorithms (such as RSA, which is the focus of this paper)
and demonstrated that when the execution is glitched
at the right moments, secure keys could be retrieved.
Hence, it is important to protect sensitive algorithms
such as crypto functions against fault injection attacks.

Two types of countermeasures reported in the litera-
ture can be used to protect RSA against fault injection:
prevention and detection. In prevention, the countermea-
sures try to prevent the fault injection from occurring
in the first place. In this category only passive shielding
has been proposed. Passive shielding covers parts of the
circuit in order to make it hard for electromagnetism or
light pass through and hence hard to create faults [1].
Note that such countermeasures are very limited. The far
majority of countermeasures are based on detection. We
can further categorize detection into three subgroups. The
first subgroup uses active shields, which continuously
checks the integrity of data against an EM or laser
attack [1], [9]. The second subgroup uses sensors to

detect fluctuations in light, supply voltage, and clock
frequency as a result of glitching [1]. However, both
active shields and sensors work only for specific fault
attacks. The third subgroup uses integrity checks of
the sensitive operation by adding redundancy. They are
the most popular countermeasures. Redundancy can be
added over time [10], [11] or in space [12], [13]. In
RSA, redundancy is attained by calculating the whole
algorithm or parts of it again [14], calculating the inverse
operation [15], or using a validation operation [16]–[18].
Although the detection mechanisms based on redun-
dancy work well against all fault injection techniques,
they can be bypassed when the final redundancy check
is glitched. In general, all of the above countermeasures
clearly have limitations and a protection scheme that
addresses them is needed.

In this paper, we develop a novel and intelligent
detection countermeasure based on a recurrent neural
network (RNN). The RNN evaluates the integrity of the
program flow of the RSA decryption. Major benefits of
this approach are i) generality - it works against all
fault injection techniques that affect the program flow; ii)
reconfigurability - the neural network can be modified
for different crypto algorithm implementations by mod-
ifying its weights; and iii) robustness - there is no final
check, as each instruction is verified individually, and
this makes bypassing the fault injection check extremely
hard. As a result, the main contributions of this paper
are the following:
• Proposal and development of a generic, reconfigurable

and robust RNN-based detector against fault injection
attacks on software RSA.

• Development of a validation methodology to evaluate
the effectiveness of the proposed detector against real
threats using custom fault injection models.

• Proposal of an efficient and optimized hardware archi-
tecture of the detector with an acceptable overhead.
The remainder part of this paper is organized as fol-

lows. Section II explains the scope of the work. Section III
presents the design of the detector. Section IV describes
the experimental setup and results. Finally, Section V dis-
cusses the results and reflects on the proposed detector.

II. METHODOLOGY

This section describes the design and evaluation of
our RNN-based detector. The methodology consists of
six steps, which are described further.
1. Selection of the target application: In general, the
detector can be trained to learn any instruction sequence
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and hence, can be applied to any secure application.
However, in this paper we focus on the protection of
software RSA [19] decryption implementations based
on square-and-multiply (SAM) and Chinese remainder
theorem (CRT) [20].
2. Selection of the instruction set architecture (ISA): To
execute an RSA software implementation, its code must
be compiled into machine instructions. These machine
instructions depend on the selected ISA. We use a RISC-
V architecture [21] in this work.
3. Definition of the threat model: During an RSA
execution, instructions are vulnerable to attacks. When
the right instructions are glitched, RSA can be broken.
We assume that an attacker has access to the outputs of
correct and faulty decryptions. Hence, the attacker is able
to exploit threats referred as Bellcore [22] and Bao [23].
4. Creation of the fault injection models: To realize
the threats, faults have to be injected. We consider the
following four fault injection models:
1) Bit-level fault model. This fault model injects a single bit

flip in an instruction. The position of the bit is selected
randomly. This fault model reflects the effects of high-
end fault injection techniques. For example, (Agoyan
et al., 2010) used a laser to flip single bits [8].

2) Byte-level fault model. This fault model selects a ran-
dom byte and modifies it randomly to another. This
fault model reflects the effects of a simpler fault in-
jection technique. For example, (Barenghi et al., 2011)
used voltage underfeeding to create byte faults [24].

3) Branch-to-opposite fault model. This fault changes
branch instructions to the opposite. We created this
fault model to address the practical attack presented
by (Barenghi et al., 2009). In this attack, the authors
used this strategy with voltage underfeeding, which
enabled them to realize Bao’s threat [25].

4) Instruction-to-instruction-I/-II fault models. These two
fault models are extensions of the previous one. They
randomly change one instruction into another. In
variant I, a limitation is set for the branch instruction
type; only branch instructions can change into other
branch instructions. This is to limit the number of
crashes. This limitation is removed in variant II.

5. Construction of the machine learning algorithm:
Following the idea proposed by (Moustapha et al., 2008)
for the detection of sensor faults [26], our detector learns
the fault-free instruction flow of RSA. After learning,
it can detect faults that break this flow. Hence, we
need a machine learning algorithm that can incorporate
previously executed instructions. We use an RNN for this
task. The construction of an RNN consists of three tasks:
network design, training and evaluation. In the network
design task, we select network parameters such as types
of layers, numbers of layers, number of recurrent cells
(also referred as RNN cells), etc. During the training
task, we train the RNN using a training set of correct
decryptions. Lastly, in evaluation, we determine the
performance of the trained RNN by using a test set,
which contains faulty decryptions.
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Fig. 1. RNN used in this work

6. Implementation of the detector: Our detector mon-
itors the executed instructions. Therefore, it is imple-
mented as a hardware module next to the CPU. To
minimize the area overhead, we construct our RNN as
hardware optimal as possible.

III. RNN-BASED DETECTOR

This section details Steps 5 and 6 from Section II.

A. Construction of Machine Learning Algorithm
1. RNN design: We design our RNN to compute the
expectance probability of the current fetched instruction
by using the five previously fetched ones. Figure 1 shows
the layers and the dimensions of the neural network. The
neural network contains three layers (i.e., embedding,
RNN and dense layer).

The input to the first layer are the fields of the instruc-
tion that determine the instruction type. For the RISC-
V, they are opcode, f3 and one bit of f7. Together they
have a length of 11 bits. We encode this by using one-hot
encoding. The first layer of the network is the embedding
layer. This layer reduces the size of the one-hot vector to
eight elements. The outputs of the embedding layer are
connected to the RNN layer. This RNN layer processes
the last five instructions and outputs a vector to the last
layer. The last layer (i.e., the dense layer) is used to make
the decisions. The neurons in this layer produce the ex-
pectance value of their corresponding instructions (e.g.,
neuron 659 gives the expectance value of instruction
659). We only look at the output of the currently fetched
instruction as it determines its likelihood of occurrence;
an unlikely instruction indicates a fault.
2. RNN training: The training phase of the detector
consists of five steps. The aim of the first step is to
create binaries of a software RSA decryption written in
C. We use one implementation based on CRT and one
without. Any step described hereafter applies to both
cases. Both implementations use random keys, plain-,
and ciphertexts. Moreover, they use square-and-multiply
(SAM) algorithm for faster exponentiations. The imple-
mentation with CRT uses also the extended Euclidean
algorithm for calculating modular inverses. To create the
binaries, we use the riscv_gcc (version 7.1) compiler [27].

In the second step, we use the generated binaries to
initialize the instruction memory of the RISC-V pro-
cessor. This processor is implemented in RTL and is



Fig. 2. Hardware architecture of the RNN-based detector

part of a system-on-chip (processor, cache memories and
peripherals). In the third step, we compile and simulate
this RTL code with the testbench using the QuestaSIM
simulator [28]. During the simulation, processor fetches
instructions from the instruction memory and executes
them. The simulator saves this sequence of executed
instructions into a text file.

In the fourth step, we construct two datasets using the
text file with executed (non-faulty) instructions. These
sets are the training set and validation set. Finally in
the fifth step, we use the training set to train the RNN
with the aim of predicting the next instruction when
previous five are supplied. We then use the validation
set to calculate a threshold value for the expectance.
This con fthr is the lowest expectance value of all the
instructions in the validation set. Later during runtime, if
an instruction has a lower expectance value, the detector
considers it as faulty.
3. RNN evaluation: The first two steps of the evaluation
phase are identical to the training phase. However, in the
third step, we modify the testbench to inject faults to the
instructions during simulation. To do this, the simulator
randomly glitches the instruction memory using one of
our fault models (see Section II). The simulator saves the
executed instruction sequence into a text file. Finally in
the fourth step, we construct a dataset named test set that
contains these faulty decryptions. Using this test set, with
the trained RNN and calculated con fthr, we evaluate the
detection rate of faults.

B. Implementation of the Detector
The hardware implementation of detector is shown

in Figure 2. It consists of two major components: the
embedding layer (containing the input encoding and em-
bedding layer) and the Instruction-RNN cell (containing
the RNN cells and dense layer).

The function of the embedding layer is to generate
eight input numbers to the RNN cells when an 11 bit
instruction (id ∈ {0, 1, . . . , 2047}) is provided (see also
Figure 1). We implement this layer as a lookup table
(LUT). The hardware implementation also contains a
decoded instruction buffer, which is used to store data to
keep up with the instruction fetch speed of the processor;
this is explained in more details later.

The second component is the Instruction-RNN cell. It
is further divided into two sub-components: five systolic

arrays implementing the RNN cells and Integration and
Prediction unit that combines the outputs of the RNN
cells, which makes a prediction of the correctness of the
currently fetched instruction. The systolic array architec-
ture [29] implements the vector matrix multiplications
of the RNN cells. In total, five systolic array units are
used where each one contains eight multiplication-and-
accumulation (MAC) elements. To optimize the RNN
cells, the nonlinear operations are removed at the cost
of a loss in accuracy. In addition, we unroll the cells
and pipeline them. To do this, we rearrange the RNN
function (that gives the probabilities for instructions at
time ti+1 using five previous instructions) as follows:

hti = W ′insti + (ZW)′insti−1 + (Z2W)′insti−2

+ (Z3W)′insti−3 + (Z4W)′insti−4 + B, (1)

where W is the weight matrix for the feedforward input,
insti (indicated by Inputs in Figure 2) is the embedded
layer output vector for the instruction at time ti, Z is
the weight matrix for the feedback input, and B is the
collective bias vector (indicated by Bias_a in Figure 2).
This equation enables us to precompute and store all ma-
trices and vectors except inst’s. This reduces the number
of multiplications and additions almost four times.

The Integration and Prediction unit sums up the re-
sults of the five systolic arrays and additionally imple-
ments the dense layer used for final prediction. The
dense layer contains 2048 neurons, where each neuron
corresponds to the expectance probability of an instruc-
tion. In our hardware implementation, we only use a
single neuron. When instruction at time ti+1 becomes
available, we load its corresponding neuron weights
from a LUT (indicated by Prediction Weights & Bias on
the figure). Secondly, we remove the sigmoid activation
function as it affects only the output range. As we only
compare the output to a threshold confidence value, no
accuracy is lost here. The MAC (for vector multiplica-
tion) and the subsequent adder in this unit implement
the last neuron. When an attack is detected, a signal is
sent to the CPU as an interruption request (IRQ).

The last important point is that our Instruction-RNN-
cell outputs a result each 8 clock cycles. As each cycle a
new instruction is fetched, we place 7 Instruction-RNN-
cells in parallel to be able to process all instructions. To
prevent loss of data, we add the aforementioned buffer



TABLE I
ACCURACY EVALUATION OF THE RNN-BASED DETECTOR

fault decryption security
fault #faults CRT non- CRT non- CRT non-

model ( f ) CRT CRT CRT

1 f = 1 0.37 0.27 0.71 0.54 0.75 0.88
f > 1 0.67 0.60 0.73 0.68 0.83 0.94

2 f = 1 0.62 0.52 0.79 0.69 0.82 0.94
f > 1 0.90 0.82 0.92 0.85 0.94 0.98

3 f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-I f = 1 0.91 0.97 0.93 0.97 0.94 1.00
f > 1 0.99 1.00 0.99 1.00 1.00 1.00

4-II f = 1 0.92 0.97 0.95 0.97 0.96 1.00
f > 1 0.99 1.00 0.99 1.00 0.99 1.00

to the embedding layer, which stores 12 instruction
features. Moreover, we replace all floating point numbers
in the design with 32-bit fixed numbers.

IV. EXPERIMENTAL RESULTS

This section describes the experiment and results.

A. Experimental Setup
We implemented the C-based RSA implementations

using 12-bit keys (without loss of generality) to speedup
simulations. The RNN is trained using the adam opti-
mizer [30], categorical crossentropy, and accuracy as a
metric. A dropout of 0.1 (normal and recurrent) was
used to avoid overfitting. Our training set consists of 750
correct decryption operations, whereas the validation set
consists of 250. During training, a batch and epoch size
of 100 are used. In the end, we obtained con fthr values of
4.3900 for the CRT and 10.9570 for the non-CRT case. In
the evaluation phase, we modified the network based on
the optimization discussed in the previous section such
as using 32-bit fixed point decimals and removing the
sigmoid from the dense layer neurons. Subsequently, we
used 2000 (faulty) decryptions per fault injection model
for evaluating the fault detection performance of our
detector. Lastly, we also used 10,000 correct decryptions
that were not parts of the training set and validation set
to test the functionality of the detector. We implemented
both training and evaluation using Python with Tensor-
flow [31] and Keras [32].

We evaluated the overhead by comparing the area
of our detector against Ariane core [33]. Ariane is a
RISC-V processor with Linux support that is suitable
for high-end applications (e.g., smartphones). The com-
plete hardware design was synthesized for the device
10AS066N3F40ELG from the ARRIA 10 family [34] of
the Intel FPGA platform.

B. Results
First, we investigated the detector efficiency against

correct decryptions. The detector successfully classified
10,000 correct operations all as non-faulty for both
CRT and non-CRT implementations, which means we
achieved 0% false positive rate. Next, we investigated the

efficiency of the detector by creating faults in the binary
using the four fault injection models presented in Section
II and evaluated how often Bellcore and Bao based
attacks were successful. Table I presents the results. In
the table, we arranged the results into three classes:
fault, decryption, and security. The fault column contains
the rate of faulty decryptions that were detected. The
decryption column includes the ratio of decryptions we
can protect (i.e., fault detection rate plus the cases where
the fault did not change the result of the decryption and
thus, the attacker cannot exploit). The security column
contains the ratio of traces that could not be attacked
(i.e., decryption rate plus the faulty decryptions that
neither Bellcore nor Bao threats can exploit. Note that
the Bellcore is not applied to non-CRT RSA). For each
fault model, two cases were considered: a single faulty
instruction f = 1 and multiple faulty instructions f > 1.

The results, which are similar for both RSA implemen-
tations, show that faults that change instructions (which
are the most effective faults as used in fault models 3, 4-I,
and 4-II) can be detected very well and that the detector
provides almost 100% security. For fault models 1 and 2,
the detection of faults is much lower as the injected faults
often glitched the data parts which are not analyzed by
the neural network. In contrast to faults affecting data
fields, our analysis showed a high accuracy for bit and
byte-level faults in the control fields of an instruction.
Overall, the average decryption/security rate per fault
model is around 60-80% for these fault models. However,
these numbers are far from a perfect detection, and
therefore, this is the main limitation of our detector.

The synthesis results show that our detector equals
to 15% (34,785 LC combinationals) of the combinational
logic and 1.5% (8211 LC registers) of the registers of
the Ariane core, which corresponds to 5.7% of the total
area of Ariane. In addition, our solution requires 80kB of
memory to realize the LUTs related to network weights.

V. CONCLUSION

In this study, we proposed a fault detector for software
RSA implementations. To test its effectiveness, we pro-
posed a collection of fault injection models. Our results
show that our model works especially well against faults
that change an instruction to another. Additionally, with
only changing the network weights, we were able to
protect two different implementations, which shows the
flexibility of our detector. Finally, the hardware imple-
mentation is shown to be practical as it is less than 6% of
a high-end processor. Future work aims to improve the
accuracy of the detector especially in detecting bit and
byte faults, by evaluating the instructions together with
other micro-architecture information; such as memory
addressing, register controls, or branch decisions.
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