Power Management Integrated Circuit for Electrostatic Kinetic Energy Harvesters | IEEE Conference Publication | IEEE Xplore

Power Management Integrated Circuit for Electrostatic Kinetic Energy Harvesters


Abstract:

In this paper we present an autonomous Power Management Integrated Circuit PMIC for an electret-biased electrostatic kinetic energy harvester with a Bennet's doubler cond...Show More

Abstract:

In this paper we present an autonomous Power Management Integrated Circuit PMIC for an electret-biased electrostatic kinetic energy harvester with a Bennet's doubler conditioning circuit. The circuit is designed in high voltage 0.35μm standard bulk CMOS technology. It supplies a low voltage load from the energy extracted from a high voltage transducer. The circuit is provided with a “cold start” mechanism and with a “safe mode” (Recovery) feature that permits to the system to stay active (awake) for a longer time after external vibrations stop temporarily. An ultra-low static power hysteresis comparator is designed for a specific control of the capacitive transducer's conditioning circuit. The autonomy of the system is ensured by a voltage regulator that supplies the internal blocks of the circuit with 1.1 V. The measured maximum end-to-end efficiency of the implemented system is 75% when the available input power was of 80 μW.
Date of Conference: 12-14 October 2020
Date Added to IEEE Xplore: 28 September 2020
Print ISBN:978-1-7281-3320-1
Print ISSN: 2158-1525
Conference Location: Seville, Spain

References

References is not available for this document.