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†IBM Research - Zurich, 8803 Rüschlikon, Switzerland, Email: {ibo, anu, ele, ase}@zurich.ibm.com

‡Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Abstract—In-memory computing is an emerging non-von Neu-
mann computing paradigm where certain computational tasks
are performed in memory by exploiting the physical attributes
of the memory devices. Memristive devices such as phase-change
memory (PCM), where information is stored in terms of their
conductance levels, are especially well suited for in-memory
computing. In particular, memristive devices, when organized
in a crossbar configuration can be used to perform matrix-
vector multiply operations by exploiting Kirchhoff’s circuit laws.
To explore the feasibility of such in-memory computing cores
in applications such as deep learning as well as for system-
level architectural exploration, it is highly desirable to develop
an accurate hardware emulator that captures the key physical
attributes of the memristive devices. Here, we present one
such emulator for PCM and experimentally validate it using
measurements from a PCM prototype chip. Moreover, we present
an application of the emulator for neural network inference
where our emulator can capture the conductance evolution of
approximately 400,000 PCM devices remarkably well.

Index Terms—In-memory computing, neural networks, phase-
change memory, hardware emulator

I. INTRODUCTION

The explosive growth in data-centric artificial intelligence
related applications has necessitated the exploration of non-
von Neumann computing paradigms such as in-memory com-
puting. In in-memory computing, the physical attributes of
memory devices are exploited to perform computational tasks
in place without the need to shuttle around data between the
memory and the processing units [1], [2], [3], [4], [5], [6].
A new class of emerging memory devices known as resistive
memory or memristive devices are particularly well suited for
in-memory computing [7]. For example, the memristive de-
vices, when organized in a crossbar configuration can be used
to perform matrix-vector multiply operations. Here, the matrix
elements are stored in terms of the conductance values of the
memristive devices. By exploiting Ohm’s law and Kirchhoff’s
current summation law, the matrix-vector multiply operation
can be performed in constant time. This computational ca-
pability makes in-memory computing especially interesting
for applications such as deep learning training and inference,
where cascaded stages of matrix-vector multiplications form
the bulk of computation [8], [9], [10]. The forward propagation
(inference) stage, as well as the backpropagation, can be
realized by merely reading the array.

In spite of the promise of in-memory computing for applica-
tions such as deep learning, several open questions need to be
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Fig. 1: (a) Schematic illustration of a PCM device with a
mushroom-type device geometry. (b) Corresponding PCM cell
model used for the FPGA-based emulator design.

addressed. First, it is essential to understand the computational
reliability and accuracy of memristive in-memory cores for a
range of applications since memristive devices exhibit non-
idealities, such as temporal variations of conductance values.
Identifying desired device characteristics for target applica-
tions can provide useful insight into future device designs.
Furthermore, it is critical to develop efficient system archi-
tectures that involve cascaded memristive in-memory cores
for applications such as deep learning. Note that compared
to all-digital implementations, in-memory computing is more
amenable for highly pipelined dataflows. Finally, it is of
significant importance to develop a versatile software stack
that can map the applications to the multi-core in-memory
computing hardware. An accurate and fast hardware emulator
of memristive devices and computing cores will be an indis-
pensable tool to address all of these goals. In comparison to
a software simulator, a custom-designed hardware counterpart
can perform the prototyping of an in-memory computing core
in a more rapid manner.

An FPGA-based hardware emulator for PCM arrays, which
can mimic the temporal conductance evolution of PCM, has
been previously demonstrated in [11]. The system is shown
to perform a matrix-vector multiplication on a 256x256 emu-
lated array in only 136.16 microseconds. However, functional
verification with experimental data has not been demonstrated
yet. In this paper, we show for the first time an FPGA-based
hardware emulator that can reliably capture experimental PCM
characteristics. In Section II, we present the emulation of
single PCM devices in an FPGA where we capture the key
physical attributes such as conductance drift and 1/f noise.
We validate the emulator using experimental measurements
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Fig. 2: Experimental measurements on mushroom-type PCM devices fabricated in 90 nm technology node. (a) Mean conductance
evolution of 100 devices programmed to different target conductances and the corresponding linear fits according to Eq.
(1). The shades denote one standard deviation. (b) Power spectral density (PSD) of the conductance signals for each target
conductance level and the corresponding fit according to Eq. (2). (c) Emulation of the mean conductance evolution of 100
devices programmed to three different target conductance levels. (d) Emulation of the conductance evolution of 3 PCM devices.

from 100 devices from a prototype PCM chip programmed to
various conductance levels. In Section III, we present how a
PCM multi-cell crossbar array emulation can be constructed.
Finally, in section IV, we illustrate the application of the PCM
crossbar emulator for neural network inference, and we vali-
date our results with an experiment involving approximately
400,000 PCM devices.

II. PCM CELL EMULATION

PCM is arguably the most advanced resistive memory
technology and has been widely employed for in-memory
computing [12], [13], [14], [15], [16]. PCM exploits the
behavior of certain phase-change materials such as Ge2Sb2Te5
that can be switched reversibly between amorphous and crys-
talline phases of different electrical resistivity. A PCM device
consists of a certain volume of this phase-change material
sandwiched between two electrodes (see Fig. 1a). By applying
suitable electrical pulses, referred to as programming pulses,
it is possible to alter the phase configuration within the
PCM device and achieve different conductance values. By
iterative programming schemes comprising multiple program-
and-verify steps, it is possible to obtain any desired conduc-
tance value within a certain error margin [17]. However, the
programmed conductance values exhibit temporal variations
such as drift, which is attributed to the structural relaxation of
the unstable amorphous phase [18], and 1/f noise. These tem-
poral variations are shown to be detrimental for PCM-based
implementations [19] and hence need to be well captured by
a PCM cell emulator.

As shown in Fig. 1b, the PCM cell emulator consists of
two functional modules, one for the conductance drift and
one for the 1/f noise. The drift is modeled according to the
following power-law equation and can be rearranged for ease
of hardware implementation.

G(t) = G(t0)

(
t

t0

)−ν

= G(t0)exp

(
−ν ln

(
t

t0

))
(1)

In Eq. (1), G(t) denotes the conductance value at time instance
t, G(t0) denotes the conductance at time t0, and ν is the
drift exponent. For 90 nm doped GST devices, ν is reported
to take values between 0.03 and 0.1, depending on the initial
amorphous volume created with the programming pulse [20],
[21]. There is also variability associated with ν [20], [22], [23].
To capture these observations, we sample the drift exponent of
individual devices from a Gaussian distribution with a certain
mean and standard deviation. For the 1/f noise module,
a hardware block was designed in order to implement the
equation:

SInoise(f) = I2readQ
1

f
(2)

SInoise(f) denotes the power spectral density associated with
the read noise [24]. Iread denotes the mean read current when
biased by the read voltage, V . As shown in Fig. 1b, we gener-
ate two independent and normally distributed random vectors
with a dimension of NFFT /2+1, with known variance, Q, and
zero mean, and we use them as a complex Gaussian random
vector in the frequency domain. The amplitude of the complex
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Fig. 3: The PCM crossbar emulator. (a) Functional diagram [11]. (b) Hardware diagram of the PCIe-based FPGA system.

Gaussian random vector is scaled by the 1/
√
f factor. Then the

negative frequency spectral samples are determined to satisfy
for Hermitian symmetry. Finally, the inverse Fourier transform
(NFFT points) is applied for generating a real-valued time
series with the desired noise characteristics [25].

The underlying functions associated with the drift and noise
functional modules were implemented with the utilization
of floating-point cores that integrate DSP slices, which are
pipelined for achieving high throughput, if a large number of
cells has to be emulated. With this model, we can investigate
the influence of drift and 1/f noise on scalar multiplication.

For the experimental validation of the PCM cell emulator,
we used an experimental platform with 1 million mushroom-
type PCM cells, with doped Ge2Sb2Te5 as the phase-change
material, and fabricated in 90 nm CMOS technology. In order
to verify our PCM cell emulator for different conductance
levels, we programmed 100 devices to a range of 2 µS to 40 µS
using iterative programming. Subsequently, the read current
from each device measured for approximately 9 seconds with
a sampling rate of 112 kHz. The device conductances were
estimated based on the read voltage of V = 0.2 V.

Fig. 2a shows the evolution of PCM conductance states. It
can be seen that the mean behavior matches the relationship
predicted by Eq. (1). For each targeted conductance level, a
line is fitted on the average conductance evolution. The drift
exponent is calculated from the slope of this linear fit. Note
that ν depends on the initially created amorphous volume. We
assume a constant standard deviation of 0.02 for ν. To estimate
the noise and its power spectral density, we used the read
measurements obtained during the last second. The reason for
this is to decouple the effect of drift from the 1/f noise mea-
surement as drift slows down significantly with time. Fig. 2b
presents the PSD of the 1/f noise and the corresponding fitting
curves with respect to Eq. (2) for different target conductance
levels. Based on these measurements, it is observed that Q
becomes higher as the target conductance level becomes lower,
also reported by [23], [26]. The observed values of Q were
from 5.1×10−5 to 1.1×10−3. Typically, the noise in PCM
follows a 1/fγ relationship, where γ is reported to be within
the range of 0.9-1.1 [27]. The deviation from the 1/f behavior
is also evident in Fig. 2b. However, for modeling simplicity, we
assume an ideal 1/f relationship, where we use NFFT = 1024

points for the inverse Fourier transform in the emulator. The
extracted experimental parameters were used in the PCM cell
emulator, and the device behavior was emulated. As shown
in Fig. 2c and Fig. 2d, the emulated conductance evolution
over time matches the experimental behavior remarkably well.
Both the mean conductance behavior and individual device
evolution are faithfully captured.

III. PCM CROSSBAR EMULATION

The PCM cell emulation model was utilized for emulating a
multi-cell PCM crossbar architecture, as shown in Fig. 3a. The
depicted architecture uses NxN PCM emulated cells, where
each one has its own conductance and drift exponent model
parameter. Also, all cells are supplied with samples from the
same 1/f noise generator, but each emulated cell is fed with
a different instantiation of noise samples.

A sequential execution of N dot-products in the emulator
can be used to simulate the matrix-vector multiplication of a
NxN crossbar in hardware. For our scenario, each element-
wise multiplication of the dot-product is performed by one
emulated PCM cell. The element-wise multiplication can be
used to implement a k-element dot-product in a column of the
crossbar, where the k-factor depends on the available hardware
resources. Thus, a dot-product with a dimension greater than
the k-factor can be achieved by executing its operation several
times with the addition of the partial results using a tree
structure of adders and an accumulator [11], [28].

The components of the system, which implements the
emulated crossbar design, are shown in Fig. 3b. The emulated
PCM crossbar consists of two dedicated DRAM memories for
storing the crossbar conductances and drift coefficients, while
another DRAM is used for storing pre-generated 1/f noise
samples. Two dedicated data mover engines (HostDRAM -
PCM Crossbar) are used for high speed (8 GBps) transfers
of data between the crossbar and the server’s memory. A
PCM crossbar adaptation layer is used for encoding weights to
conductances, transforming vector data to voltage values and
also decoding the resulted current values. Also, it contains
nonlinearity functional blocks (i.e., RELU, sigmoid, tanh) for
neural network applications. In addition, the system incorpo-
rates a soft-CPU for initialization and control. The soft-CPU
interacts with a host application using a dedicated device driver
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Fig. 4: Neural network inference results. (a) Evolution of accuracy over time from PCM experimental results compared with
the mean behavior of emulated results and their shaded region representing one standard deviation. The inset presents the
mapping scheme of the network’s layers in a single emulated crossbar. (b) Experimental and emulated conductance distribution
of the neural network’s encoded weights for three different conductance ranges.

and descriptor-structured data transfers. The PCM crossbar
emulator has been implemented on a Kintex UltraScale FPGA
and has been tested on a high-end Xeon server.

For a matrix-vector multiplication scenario, the host ini-
tiates requests for downloading, conductance encoding, and
conductance data storing to the FPGA’s DRAM memories.
Also, it initializes a dedicated DRAM area with 1/f noise
samples. In order to start the emulated crossbar for matrix-
vector operations, three main procedures are performed: (a)
vector data are received through the host, passing by the
PCM crossbar adaptation layer and transformed to voltages,
(b) concurrently, the conductance matrix is loaded from the
DRAMs to the crossbar along with 1/f noise values, and
the computation is started, (c) finally, the resulted currents
are processed by the adaptation layer and then uploaded to
the host’s DRAM. Such a versatile process can operate in a
pipelined fashion using several crossbars.

IV. NEURAL NETWORK INFERENCE USING THE
EMULATED PCM CROSSBAR

For the evaluation of the emulated PCM crossbar, we con-
sidered the task of MNIST handwritten digit recognition. For
that purpose, we compared emulated, and experimental infer-
ence results from PCM arrays over time for a fully-connected
neural network with two layers. The network dimensions
are 784-250-10, and it was trained in software using single-
precision floating-point weights. Next, the trained weights
were iteratively programmed to conductance values on the
PCM prototype chip, utilizing approximately 400,000 PCM
devices. These weights are linearly mapped to conductance
values. A differential PCM configuration is used for each
synapse where one device denotes the positive part of the
weight, and the other device denotes the negative part of the
weight. According to the sign of the weight, one device of each
differential pair is set close to 0µS. We use the programmed
conductance values of PCM devices at 23 µsec as the emula-
tor’s initial state [10]. The subsequent conductance values of
later time steps are determined with model parameters (i.e.,

drift exponent, 1/f variance Q factor). For simplicity, we
adopt the parameters used to emulate the behavior of devices
with target conductance of 5µS in Section II (ν̄ = 0.06,
σν = 0.02, Q = 4× 10−4). Note that the target conductances
representing the network weights are mostly contained within
the range of 0 to 5µS.

In Fig. 4a, we present accuracy results of neural network
inference for a time period greater than 27 hours. The evo-
lution of the mean accuracy over time from the experiment
is well captured by the emulator. Additionally, to further
verify our model regarding the conductance drift and noise,
we show the evolution of the network’s weight distribution
encoded to conductances. As depicted in Fig. 4b, the emulated
results capture well the temporal evolution of the conductance
distributions for different target conductance states.

For this inference application, both weight layers of the
neural network were emulated in a single crossbar in a
pipelined fashion. This is achieved by using a crossbar size of
1034x520, to fit both layer dimensions, with redundant cells
(zero conductance) in appropriate places of the weights’ matrix
(see Fig. 4a inset). With this mapping approach, our emulator
achieves a processing rate of 8.8 kilo-images per second and
227µsec latency.

V. CONCLUSION

In this work, we presented an accurate FPGA-based hard-
ware emulator for phase-change memory that captures the key
physical attributes such as temporal drift of conductance values
as well as 1/f noise. The PCM cell emulator and its extension
to the PCM crossbar emulator were experimentally validated
using a prototype PCM array based on a deep learning
inference hardware experiment that involves approximately
400,000 PCM devices. The presented hardware emulator can
be a powerful tool for the exploration of in-memory comput-
ing and its applications. This approach is scalable to larger
networks and more complex problems, while the application
domain is not restricted to neural network inference as this
emulator can benefit other in-memory computing scenarios.
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