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Abstract—Designing and implementing artificial neuromorphic
systems, which can provide biocompatible interfacing, or the
human brain akin ability to efficiently process information, is
paramount to the understanding of the human brain complex
functionality. Energy-efficient, low-area, and biocompatible arti-
ficial neurons are key ubiquitous components of any large scale
neural systems. Previous CMOS-based neurons implementations
suffer from scalability drawbacks and cannot naturally mimic
the analog behavior. Memristor and phase-changed neurons have
variability-induced instability drawbacks, and usually rely on
additional CMOS circuitry. However, graphene, despite its bal-
listic transport, inherently analog nature, and biocompatibility,
which provide natural support for biologically plausible neuron
implementations has only been considered for Boolean logic
implementations. In this paper, we propose an ultra-compact,
all graphene-based nonlinear Leaky Integrate-and-Fire spiking
neuron. By means of SPICE simulations, we validate its basic
functionality and investigate the output spikes response under
stochastic noisy input spike trains with a variable firing rate,
from 20 to 200 spikes per second. Simulation results indicate
neuron robustness to noisy scenarios, and neuronal output firing
regularity. The small area and the low energy consumption, due
to 200mV supply voltage operation, can benefit the implementa-
tion of large scale neural networks, and the biologically plausible
operating conditions (e.g., 2ms and 100mV spike duration and
amplitude), can promote the interfacebility of graphene-based
artificial neurons with biological counterparts.

Index Terms—Neuromorphic Computing, Integrate-And-Fire
Neuron, Graphene, GNR.

I. INTRODUCTION

The human brain’s unique, outstanding properties (e.g., en-

ergy efficiency, suitability for complex task solving, real-time

reaction and highly parallel information processing ability)

make it a powerful high performance computing system, which

promotes the development of novel biologically-inspired com-

putation paradigms (e.g., neuromorphic computing) targeted to

understand the brain intrinsic operational principles and obtain

biological brain-alike computation abilities.

Since the nervous system, which supports the human brain

complex functionality, comprises billions of neurons, it makes

the design and implementation of large-scale neuromorphic

computing systems an extremely challenging task. State-of-

the-art CMOS-based artificial neurons use complex CMOS

circuitry and have a relatively high power consumption [1], [2],

which limit the complexity, scalability, and energy efficiency

of achievable neuromorphic system implementations. Besides,

CMOS-based neurons cannot intrinsically mimic the analog

behavior of biological neurons. Recently, emerging resistive

switching memory devices [3] attracted interest and have been

utilized in spiking neurons implementations [4], [5], due to

their analog behavior, ability to restore the state memory,

and good scalability. However, they suffer from resistive

state temporal and spatial variability and undesired stochastic

behavior, which may cause neuromorphic systems instability.

Artificial neurons based on the phase-change devices were also

proposed as an alternative for scalable neuromorphic systems

[6], [7] as their accumulation property can provide a proper

electronic mimicry of spiking neurons membrane potential

dynamics. However, phase change neuron implementations

require additional CMOS circuitry to emulate the neuron

functionality and rely on externally generated auxiliary signals

that control the basic functionality of phase-change devices.

They also operate at relatively high voltages, which impede

the implementation of energy efficient neuromorphic systems.

Graphene, [8] has lately emerged as one of the most

promising materials for nanoelectronics, as it exhibits ballistic

transport, ultimate thinness, an inherently analog nature, and

is flexible and biocompatible. Due to its properties graphene

transistor-based logic, which follows the traditional CMOS

design style has been proposed in [9] [10], while alterna-

tive approaches towards gate realizations departing from the

switch-based mainstream have been introduced in, e.g., [11],

[12]. Moreover, as graphene is biocompatible and can model

complex functionality within a single Graphene Nanoribbon

(GNR), GNR-based synapses have been proposed in [13].

This paper investigates graphene’s potential towards low

cost and energy effective implementations of biologically

plausible neurons. Specifically, we propose an all graphene-

based ultra-compact and low voltage neuron, which is able to

emulate the essential features of spiking neurons, including

the membrane potential accumulation, the firing event, the

refractory effect, and the output spike generation. The pro-

posed neuron is operated with voltage ranges akin to those of

biological neurons, which makes it a good candidate for bi-

ologically plausible utilization scenarios. The neuron consists

of 6 GNR-based devices controlled via top-gate voltages, one

of them emulating the membrane potential dynamics, and the

remaining 5 generating the necessary control signals as well

as the output spikes. We validate the basic nonlinear Leaky

Integrate-and-Fire (LIF) neuron functionality with periodic

input spike trains. We further evaluate the neuron output

spike response when subjected to noisy stochastic input. All

experiments are carried out by means of SPICE simulation.

The obtained results indicate robustness to neuronal signals

variability, and regular output firing rate statistics with a



Vbg

SiO
2

n+
+

Vd

Vs

Vg

Dendrite

Soma Axon

Output SpikeInput Spike

 

(a) (b) (c)

Vg+ Vtraps

oxC

qC

itC

R

Vc

Vit

Vc
t2

Vc
t1

t1 t2

Fig. 1: Graphene-based device for artificial neurons: (a) Neuron structure, (b) Basic GNR-based device, and (c) Equivalent

traps-aware capacitive circuit.

slowly decreasing trend and < 1 interspike interval variation

coefficient, when increasing the input firing rates from 20
to 200 spikes per second. For all simulation, we used spike

duration and amplitude of 2ms and 100mV, respectively,

which are comparable to those observed in biological neurons.

Note that, the low area footprint (GNR-based device area of

max. 36 nm2) and low energy consumption (200mV supply

voltage) prove the suitability of our proposal for large-scale

integration.

The remaining of this paper is organized as follows: Section

II explains the basic concepts of nonlinear leaky integrate-

and-fire neuron, and introduces the basic building block for

graphene-based neurons. In Section III we describe the design

of the proposed graphene-based neuron and explain its op-

eration principle. Section IV presents simulation results and

Section V concludes the paper.

II. BACKGROUND

In this section we introduce the neuron structure, the nonlin-

ear Leaky Integrate-and-Fire (LIF) model, and the fundamental

building block for the proposed graphene-based neuron.

As illustrated in Figure 1 (a), a neuron comprises: (i) a

soma, which is the neuron’s cell body where the main neuronal

dynamics occur (e.g., membrane potential evolution, spike

generation, and refractory effect), (ii) dendrites, which connect

the neuron with other neurons, receive and process input

spikes, and generate neuronal input trains to the soma, and (iii)

an axon, which is a long nerve cell, that transmits the output

spike generated by the soma to neighbouring neurons. Various

neuron models are proposed to describe the behavior of bio-

logical neurons, among which the Integrate-and-Fire neuron

model attracts particular interest, due to its low complexity

that makes it easy to analyze neuronal behavior while being

able to capture the essential properties of biological neurons.

In a standard nonlinear Leaky Integrate-and-Fire (LIF) neuron,

the membrane potential evolution is in line with the following

equation:

du/dt = F (u) +G(u) · I, (1)

where u is the membrane potential, F (u) denotes a voltage-

dependent leak term, and G(u) is the voltage-dependent

input resistance, which accounts for the membrane potential

accumulation due to the neuron input current I . The neuronal

dynamics of a nonlinear LIF neuron can be described via:

(i) an integration process, when the membrane potential u
increases continuously (starting from the resting potential

urest) due to input spikes contributions, (ii) a firing event that

generates a neuron output spike when the membrane potential

reaches a certain firing threshold θ and then immediately

resets to a new value ureset < urest, and (iii) a refractory

period, during which the neuron cannot fire, and the membrane

potential is reset to the resting potential urest.
To implement the nonlinear LIF neuron with graphene-

based devices, we rely on the basic building block, illustrated

in Figure 1 (b), which consists of a monolayer Graphene

Nanoribbon (GNR) located above an insulating material and

a doped substrate that serves as back-gate. The GNR works

as a conduction channel when applying a bias voltage Vd-Vs

between the source and drain terminals. The GNR conductance

can be modulated by changing the graphene sheet geometry

and the contacts topology as well as by means of external

voltages via the top/back gates. Figure 1 (c) illustrates the

equivalent capacitive circuit of the device in Figure 1 (b),

where Cox is the top gate oxide capacitance, Cq the GNR

quantum capacitance, and Cit the capacitance caused by inter-

face traps. Note that, it was experimentally observed that GNR

devices inherently exhibit near-interface traps [8], which will

trap/release charges via capacitance Cit in an analogue manner

with the membrane potential accumulation. When applying a

top gate voltage, Vg, charge transfer to/from graphene to the

interface traps causes an equivalent shift of Vg, with a quantity

denoted as ΔVtraps [14]. Considering a piece-wise linear Vg,

when the GNR surface potential Vc changes from V t1
c at time

moment t1 to V t2
c at time moment t2, the interface traps

charges can be obtained as:

Qit(t) = Cit ·[(V t1
c +α·t−α·τ)+e−

t
τ ·(α·τ−V t1

c +V t1
it )], (2)

where V t1
it is the accumulated voltage drop on Cit at time

moment t1, τ is the trapping/detrapping time constant, and α
is the Vc ramp slope from t1 to t2. Thus with a single graphene

device, the membrane integration features are naturally cap-

tured by the interface charge trapping/detrapping phenomena.



III. GRAPHENE-BASED NEURON

In this section we introduce the proposed graphene-based

nonlinear LIF neuron circuit and describe its operation.

As illustrated in Figure 2 (a), the graphene-based neuron

comprises six GNR-based devices, which can be divided

into 2 blocks: the integrate-and-fire block, which mimics the

membrane potential dynamics and the output block, which

generates the output spikes. To aid the explanation, we make

use of the basic operation example depicted in Figure 2 (c).

The neuron kernel is GNR2
up, which captures the membrane

potential dynamics via its conductance. Due to the GNR

inherent interfacial traps, electrical charges proportional to

the GNR applied voltages can be accumulated or released.

Starting from the membrane resting level, such behavior can

be observed until reaching the membrane firing threshold, at

which point, there is a maximum accumulation of charges

(which corresponds to a maximum conductance value). We

denote this integrate-and-fire region as Stage I. Further, to

emulate the membrane potential reset, most of the trapped

charges need to be released, situation which happens only

when the GNR2
up top gate voltage is very small (e.g., ≈ 100×

smaller Vin) - Stage II. Then, during the refractory period,

a gradual accumulation of charges should follow in order to

reach the membrane resting level, situation which is achieved

when applying a slightly bigger top gate voltage (but smaller

than the membrane resting level), e.g., ≈ 2× smaller Vin -

Stage III. The sub-circuit composed out of GNR1
up and GNR1

dn,

receives the neuronal input spike train Vin and controls the top

gate voltage of GNR2
up via Vinternal (it either directly outputs the

neuron input Vin during Stage I or a magnitude down-scaled

neuron input, i.e., ≈ Vin/100 during stage II and ≈ Vin/2
during Stage III). The output block containing GNR3

up and

GNR3
dn devices generates the neuron output spike Vout.

As illustrated in Figure 2 (c), initially, Vinternal follows Vin

and Vstage values are afferent to Stage I. When Vinternal+ΔVtraps

reaches the firing threshold, Vstage switches to Stage II and

Vinternal becomes equal to Vin/100. Charges are depleted,

the membrane potential resets, and an output spike Vout is

triggered. When Vinternal + ΔVtraps reaches the voltage value

which corresponds to the end point of the neuron input spike

Vin, Vstage transitions to Stage III, and Vinternal is generated

equal to Vin/2. When Vinternal + ΔVtraps reaches a fixed out

of refractory threshold voltage level, Vstage switches back to

Stage I, and the neuron activity resumes.

To obtain the desired GNR topologies, we performed a

design space exploration, by changing the GNR geometry,

and the width and position of the top-gate, such that for

every up/down pair of GNRs the in-between voltage follows

the aforementioned behavior. The in-between voltage can be

calculated by using a voltage divider VDD ·Gup/(Gdn +Gup),
where Gup and Gdn represent the conductance of GNRup and

GNRdn, respectively, and VDD = 0.2V denotes the supply volt-

age. Figure 2 (b) depicts the obtained GNR topologies, with

W ×L dimensions 23a×30
√
3a and 35a×30

√
3a for GNR1

up

and GNR1
dn, respectively, 23a× 30

√
3a and 29a× 25

√
3a for

GNR2
up and GNR2

dn, and 35a × 30
√
3a for both GNR3

up and

GNR3
dn, where a =0.142 nm is the distance between 2 adjacent

carbon atoms.

IV. SIMULATION RESULTS

In order to model the graphene electronic transport proper-

ties we make use of the atomistic-level tight binding Hamilto-

nian matrix to describe the interactions between carbon atoms

and external graphene potentials, the Non-Equilibrium Green

Function (NEGF) formalism to solve the Schrödinger equa-

tion, and the Landauer-Büttiker formula to derive the GNR

current and conductance [15]. As interface traps profile, we

employed a trapping/detrapping time constant of 1.6ms and an

interface trap density of 2.363 · 1013 cm−2(eV)−1 [16] , [17].

The neuron circuit was functionally validated and evaluated

by means of SPICE simulation in Synopsys HSPICE [18].

In order to preserve the GNRs physical simulation accu-

racy degree, we developed a Verilog-A SPICE compatible

generic model, which relies on look-up tables containing

GNRs conductance values for varying input profiles, which are

obtained with aforementioned atomistic-level formalization.

For instance, to calculate the GNR2
up conductance for a certain

top gate voltage Vg and drain-to-source potential Vds at the

current time moment ti in the presence of traps, we rely on

the previously applied Vg at time moment ti−1, on the time

difference between the sampling points ti − ti−1, as well as

on the traps-induced accumulation ΔVtraps at moment ti−1. All

these values are then logged in the GNR2
up corresponding table

for a wide range of scenarios.

To validate the integrate-and-fire behavior of the proposed

graphene-based neuron, we applied as indicated in Figure 3,

a deterministic periodic neuronal input Vin with 2ms spike

duration and 5ms inter-spike intervals and gradually increased

the Vin peak amplitude from 100mV to 180mV. We observe

that individual Vin spikes contributions are gradually accumu-

lated and proportionally reflected in the GNR2
up conductance G

increase. Also, we see that for smaller Vin spikes (<180mV),

the conductance increase saturates at a level below the firing

threshold, while for 180mV Vin spikes it can reach the firing

threshold, and as a result an output spike event is triggered

and reflected in the Vout value.

As biochemical processes of individual neurons, as well

as surrounding neuronal network activities exhibit stochas-

ticity, the neuronal spike trains exhibit inherent variability.

To evaluate the proposed neuron behavior in such conditions,

we considered a stochastic input spike train (sampled from a

Poisson distribution) with a firing frequency of 50 spikes per

second (comparable scenario with that of biological neurons),

and added a white Gaussian noise floor with signal-to-noise

ratio SNR = 17. Figure 4 illustrates the neuron corresponding

firing response. We note that every firing event is triggered

by an input spike and not by the noise, even though the

noise does contribute to the membrane potential accumulation.

This suggests that the proposed neuron is robust to input

noise. To gain better insight and quantify the variability of

the output spike train produced by the proposed neuron, we
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Fig. 2: GNR-based LIF neuron: (a) Neuron structure, (b) GNR topologies, and (c) Basic operation.
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Fig. 3: Integrate and fire dynamics.

Fig. 4: Graphene-based neuron dynamics under random input.

consider a range of input firing rates from 20 to 200 spikes

per second and calculate the output mean firing rate and the

variation coefficient CVISI, which is equal to the standard

deviation of the inter-spike timing intervals divided by their

mean. Simulation results, depicted in Figure 5, indicate a

steady linear increase of the mean output firing rate, suggesting

a regular firing behavior for the proposed graphene-based

neuron. The output spike train propensity for regularity is also

confirmed by a slightly decreasing and < 1 inter-spike interval

coefficient of variation.
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Fig. 5: Output spike statistics for variable input firing rate.

In retrospective, the proposed graphene-based neuron ex-

hibits a small footprint (max. 36 nm2 per GNR device),

and low voltage operation (e.g., 200mV), which are desired

characteristics for artificial neural networks large-scale imple-

mentations. Our simulations indicate regularity of firing events

under noisy stochastic input spike trains. Furthermore, the

considered 2ms spike duration and 100mV spike amplitude

are comparable with that observed in biological neurons,

suggesting the potential to fabricate biologically plausible arti-

ficial neurons potentially interface-able with biological tissues.

V. CONCLUSIONS

In this paper, we proposed an ultra-compact, all graphene-

based nonlinear leaky integrate-and-fire neuron. By means of

SPICE simulation, we demonstrated that the proposed neuron

can properly emulate the basic spiking neuron dynamics

under periodic input spikes. We further investigated the output

spikes’ behavior under stochastic noisy input spike trains. Our

simulation results indicated variability resilience and neuronal

output firing regularity for a varying input firing rate (from 20
to 200 spikes per second). The small area, low energy (inherent

to the 200mV supply voltage) and the biologically plausible

settings (e.g., 2ms and 100mV spike duration and amplitude)

are certainly enabling factors for the potential implementation

of large-scale biocompatible neural systems.
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