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ABSTRACT

Deep neural networks (DNNs) have been emerged as the state-of-the-art algorithms in broad range of
applications. To reduce the memory foot-print of DNNs, in particular for embedded applications,
sparsification techniques have been proposed.Unfortunately, these techniques come with a large
hardware overhead. In this paper, we present a hardware-aware pruning method where the locations
of non-zero weights are derived in real-time from a Linear Feedback Shift Registers (LFSRs). Using
the proposed method, we demonstrate a total saving of energy and area up to 63.96% and 64.23% for
VGG-16 network on down-sampled ImageNet, respectively for iso-compression-rate and iso-accuracy.

Keywords Sparse Neural Network · Linear Feedback shift Register · DNN accelerator

1 Introduction

Neural networks (NNs) have shown remarkable performance in a broad range of applications, from computer vision
[1, 2] to health-care data analysis [3, 4]. These algorithms have gradually evolved to larger models with deeper layers
and increasing number of parameters [5].While the large DNNs are powerful and provides high accuracy for complex
tasks, they cannot be easily deployed on embedded mobile applications due to two major problems [6]. Firstly, because
the models are large and often over-parameterized, it must be stored in an external DRAM. The second major issue is
that accessing model parameters from an external DRAM consumes large amounts of energy [7]. For example, in the
45nm CMOS technology, accessing a 32bit DRAM memory requires 640pJ, which is 3 order of magnitudes higher
than a 32bit floating point add operation (0.9 pJ) [7]. Therefore, it is hard to deploy large DNNs on battery constrained
mobile platforms.
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Network compression via pruning techniques is one possible solution to fit large DNNs such as VGG-16 (138M
parameters, 520MB) in on-chip SRAM [8, 9, 10]. However, it is challenging because sparse matrices add extra levels of
irregularity to the weights’ addresses [8, 11]. In [12], a pruning method has been proposed which prunes the connections
that have smaller weights than a threshold via an iterative process of pruning and retraining. Although this method
prunes the network with no loss of accuracy; the method is heuristic and the threshold values need to carefully selected.
Further, resultant matrix lacks structure. In [7], the authors prune the network by learning the important connections
using a thresholding mechanism and then applying weight sharing and Huffman coding to compress the networks even
further. The problem with this method is that they need to store three vectors: (1) the sparse weights matrix’s value, (2)
the location or address of the non-zero matrix weights and (3) the pointer vector to keep track of the weights in each
column. In addition, weight sharing adds another level of indirection and complexity [13]. In summary, the baseline
pruning method is powerful from an algorithm perspective, but its mapping to hardware is inefficient and requires a
memory foot-print as high as 2× that of the model size.

In this paper, we present a hardware-aware method to prune dense DNNs which reduces the memory footprint while
preserving the original accuracy. We utilize an on-die linear feedback shift register (LFSR) using a known seed, to
generate a pseudo random sequence (PRS). Next, we use this PRS to regularize and prune the network. In the last
step, we retrain the sparse network so that the model can perform better with the pruned model. In addition, during
inference we use the LFSR with the same seed to generate the indices in real-time to perform multiplication between the
sparse weight matrix and input/activation vector. Consequently, we no longer need to store the sparse weight addresses –
thereby reducing the memory foot-print significantly.

2 Proposed Hardware-Aware Pruning

Proposed pruning and baseline methods are illustrated in Figure1. The proposed pruning method consists four steps.
It begins with generating a pseudo-random sequence (PRS) using two LFSRs, one for row indices and another one
for column indices. We then use the generated PRS as the indices to sparsify the synapses (i.e. connections) by using
standard regularization methods in an iterative approach. The specified synapses are regularized to force them to be
zero in the training step and be pruned away in the pruning step. The last step is retraining the sparse model so that
the sparse model can provide higher accuracy. Using a PRS for generating the locations of the zero weights in the
connectivity matrix provides good accuracy, while making it easier to generate the indices on the fly, instead of being
stored in a separate memory sub-bank.

We use Han et. al, 2015 [12] as the state-of-the-art baseline pruning techniques for the proposed algorithm. In [12],
illustrated in Figure 1, a pruning method was proposed to prune the redundant connections in an iterative process based
on a threshold. First, the neural network is trained starting with random initial conditions. Next, the connections less
than a threshold are pruned iteratively and finally, the pruned network is fine tuned using several epochs of retraining.
Interested readers are pointed to [12] for further details.

2.1 Linear Feedback Shift Register (LFSR)

LFSR [14] is one of the most commonly used topologies for implementing and generating pseudo random bit se-
quences [15]. The advantages of using an LFSR to generate the indices are: (1) they can be easily be implemented in
hardware, (2) the PRS has key statistical properties that preserves the rank of the generated connectivity matrix [16].

Figure 1: From left to right, training pipeline for baseline (Han et.al, 2015 [12]), proposed pruning method and an
example of pruning the synapses and neurons of a fully connected network.
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Figure 2: From left to right, the hardware architecture of the baseline and the proposed pruning method, respectively.

LFSR, consists of an array of flip-flops with an initial state called input seed (s), followed by linear feedback performed
by several exclusive-or (XOR) gates (ci). LFSRs can be mathematically described through nth order characteristic
polynomials:

xn + cn−1x
n−1 + ...+ c1x+ 1 (1)

To obtain the maximum PRS length, the characteristic polynomials have to be primitive [16] where the maximum
period without repetition is 2n − 1. In the proposed method we utilize two LFSRs, to generate random sequence for the
indices of the rows and columns, separately. The row index indicates the address of the element in the input vector
while the column address encodes the address of the output vector.

2.2 Training with PRS based Regularization

A fully connected (FC) layer of DNN performs the following function:

a = f(Z) where Z =WTx+ b (2)

Where W is a weight matrix, x is an input, b is a vector of bias values, f is a non-linear activation function, typically a
Rectified Linear Unit (ReLU) [17]. For simplification, b can be merged with W by appending an additional column to
the end of matrix W . Then we can write the above equation as:

a = ReLU(

n−1∑
d=0

Wcdx) (3)

where c and d are the original weight matrix’s indices correspond to rows and columns, respectively. After selecting
the synapses using the PRS sequence, we regularize them during the training process. We apply strong regularization
on the selected synapses, based on LFSRs indices, in order to force the network to zero-out these synapses. We have
studied both L1 and L2 regularization [12] to penalize non-zero weight values. For L2 regularization, a regularizer
component is added to the cost (J) , as shown in Eq.4 and weights will be updated based on Eq. 5.

J(W [l], b[l]) =
1

m

m∑
c=1

L(ŷ(i), y(i)) +
λ

2m

L∑
l=1

||W [l]
ij ||

2
F (4)

W [l+1] =

{
W [l][1− βλ

m ], if c, d = i, j
W [l] − βdW [l], otherwise

(5)

Where i and j are correspond to the indices from LFSR 1 and LFSR 2 for rows and columns, respectively. β is the
learning rate. L is the layer’s number in the network. λ is the regularization parameter and can be tuned. Larger λ will
more penalized the weights values and make them closer to zero.

2.3 Pruning and Retraining

After heavily regularizing the selected weights, a pruning step is employed to make sure that all the selected weights
are exactly zero as regularization makes the connection very close to zero, but not exactly zero. With the LFSR based
pruning method, the activation computation of Eq. 6 becomes
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a = ReLU(

n−1∑
j

Sijx) (6)

where S is a sparse weight matrix where i and j belong to the first and second LFSR, respectively. The last step of
the process is to retrain the pruned network to fine tune the remaining synapses so that they better compensate for the
removed connections.

2.4 DNN compression

To fully understand advantages and limitations of baseline and proposed algorithms, we implement both methods
in digital hardware (Figure 2). The two circuit diagrams show how hardware resources/operations differ to solve a
sparsely connected fully-connected layer, with N input neuron, M output neuron and Sp as sparsity. For the hardware
implementation of our proposed method, the LFSR is used to generate the index for the input to be multiplied to the
corresponding weight in sparse matrix weight. LFSR generate the pseudo random sequence with values between 1 to
2N − 1. In order to keep the values between number of input neurons, we multiply the generated value to the length
of input neurons and select the most significant bits (MSBs). The goal is to avoid redundant clock cycles when the
generated number is greater that the number of neurons. After doing multiplication and accumulation operations, the
result is stored in the output buffer. The index comes from the LFSR with different input seed which is responsible for
generating the sequence for output addresses. The exact number of memory reads from the input and the output buffer
depend on the model size as well as the number of multiply and accumulate units available for parallel compute. For
the baseline algorithm, the sparse weight matrix is compressed in three vectors including the non-zero values of the
weights (S), location of the non-zero weights (I) and a pointer vector to point to the start of each column of the weight
matrix (P), that should be saved in the memory. Moreover, each entry bit-width of S and I is designed to be four-bit or
eight-bits, and additional memory usage ratio resulted from limited index representation is denoted by α. For instance,
if more than 15 zeros appear before a non-zero four-bit entry, a zero is added to vectors S and I.

3 Results

3.1 Simulation results for the proposed pruning algorithm

The proposed methodology is demonstrated on three pruned networks: LeNet-300-100, LeNet-5 and VGG-16 using
MNIST, CIFAR-10 and down-sampled ImageNet [18] data-sets. Training is carried out on Nvidia GTX 1080 Ti GPUs.
The key parameters for hardware implementation are shown in Table 1. Rate of compression along with the top-1
accuracy error before and after pruning for three mentioned models are shown in Table 2. We observe that the proposed
method does not affect the rank of weight matrices (Table 3). As the matter of fact the rank in the proposed approach is
close to full rank (as in unpruned models) of the dense matrix. Since the PRS maintain the matrix rank, we infer that
the expressibility of the weight matrices and accuracy of the network can remain unchanged.

3.1.1 Pruning on Fully Connected Layers

Large DNNs are over-parameterized; this mostly correspond to the large fully connected layers of these networks. For
instance, 124M out of 138M of the parameters are related to the 3 fully connected layer in VGG-16. Because of this,
we focused on pruning fully connected layers’ connection as they consume most of the energy and memory size from
hardware perspective.

Table 1: Hardware Parameters.

Technology Node TSMC 65nm
Supply Voltage 1V

Temperature 25 ◦C
Datapath Bitwidth 8b

Index Bitwidth 4b, 8b
Clock Frequency 1GHZ

Memory Bank Size 256B, 512B, 1KB, 4KB
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Table 2: Number of parameters, pruning and reference accuracy and rate of compression.

Network Error Parameters Compression Rate
LeNet-300-100 Unpruned 4.2% 267K

LeNet-300-100 Pruned 4.9% 24K 11×
LeNet-5 Unpruned 1.5% 431K

LeNet-5 Pruned 1.6% 43K 10×
Modified VGG-16 Unpruned 48.5% 23M

Modified VGG-16 Pruned 52.1% 3.3M 7×

3.1.2 LeNet on MNIST

LeNet-300-100 is a fully connected network which has two hidden layers of length 300 and 100 neurons each which
achieves 4.9% error rate on the MNIST dataset. Accuracy loss versus different sparsity rates on MNIST is illustrated
in Figure3. Three different λ have been tested on the proposed method and the results before and after retraining are
illustrated. The results shows that moderate and strong regularization, λ equals to 2 and 10, respectively, have better
performance before and after retraining. We picked λ equals to 2 to trade-off between pruning and convergence of the
loss function while preventing over-fitting. We use both L1 and L2 regularization and the results have been illustrated 3.
L1 has better performance before retraining while L2 achieves better performance after retraining.

The second model tested on MNIST is a convolutional network, LeNet-5 that has two convolutional layers followed by
two fully connected layers. LeNet-5 achieves 1.6% error rate on MNIST dataset. The accuracy versus different sparsity
of LeNet on MNIST is illustrated in Figure 4, which shows that our method achieves the same accuracy as the baseline
for different sparsity rates.

3.1.3 LeNet-5 on CIFAR-10

We uses LeNet-5 on CIFAR-10 and the comparison between the mean± std accuracy of proposed method and the
baseline method for 5 trials is shown in Figure 4. The results shows that the proposed method is more reliable and has
less std while preserving the original accuracy as it is not based on the thresholding method.
Table 3: Rank of fully connected layers of LeNet-5 on MNIST in two different sparsity rates for fully connected (FC)
layers without pruning and the proposed method.

Network
FC layers

(un-
pruned)

Our
Method

Sparsity
Hidden Layer H1 H2 H3 H1 H2 H3

50(%) 120 84 10 118 83 10
90(%) 120 84 10 118 82 10

Figure 3: Sparsity patterns for LeNet-300-100 on MNIST. Three different lambda, including 0.1, 2 and 10 have been
tested and the accuracy loss is shown before and after retraining (right). Trade-off curves for L1 and L2 regularization
(left).
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Figure 4: The comparison between the proposed method’s mean± std accuracy and the baseline (Han et.al 2015 [12])
for different sparsity rates. From left to right figures above are for Lenet-300-100 on MNIST, LeNet-5 on MNIST and
LeNet-5 on Cifar10 and VGG-16 on down-sampled ImageNet, respectively.

3.1.4 VGG-16 on down-sampled Imagenet

We used VGG-16 on ImageNet data [18] with 1000 different classes, but initially down-sampled it to 64 × 64 [19].
Apart from a single crop with no rotation, we have not used any other pre-processing or augmentation. For this dataset
we have utilized largest batch size, 32 images/batch, allowed by the GPU memory. We then classified down-sampled
ImageNet using VGG-16 with some modification to be fit to the spatial size (i.e. 64× 64) of down-sampled ImageNet
which is due to the fact that the feature size should maintain enough spatial size before each pooling layer. The fully
connected layers size was changed to 2048 and the last pooling layer was eliminated. The results have shown in Figure
4 which shows that the proposed pruning method can preserve the accuracy even in high sparsity rates.

3.2 65nm CMOS Hardware Implementation

We have synthesized baseline and proposed methods with 65nm CMOS technology to measure hardware metrics.
Implementation parameters are shown in Table 1. The pre-layout analysis demonstrates 1.51× to 2.94× reduction in
required memory footprint between proposed method and 4-8b indexed baseline pruning technique (Figure 5). Besides
memory, the overall system (memory, multiplier, accumulator and input/output buffers) parameters are also measured.
The power and area measurements are demonstrated in Table 4 and 5. We observe a maximum of 63.96% power
savings and 68.18% area savings across varying sparsity, indexing bit-widths and baseline designs. Although significant
savings are observed for the proposed method, it should also be noted that the LFSR based column indexing introduces
additional output buffer access (1 cycle read and 1 cycle write). This is included in our design and results. We note that
additional power is negligible compared to the total power savings.

Figure 5: Total required memory for our method and the proposed method with 4 and 8 bit precision at different levels
of sparsity.
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Table 4: Measured Power (mW ) of the overall system (memory, multiplier, accumulator and input/output buffers) for
baseline and proposed method.

Network LeNet-300-100 LeNet-5 modified VGG-16

Sparsity
Bit-width 4bits 8bits 4bits 8bits 4bits 8bits

O
ur

M
et

ho
d 40% 439.9 439.9 102.9 102.9 37114 37114

70% 118.2 118.2 31.73 31.73 9294 9294
95% 46.74 46.74 15.91 15.91 3113 3113

B
as

el
in

e
M

et
ho

d 40% 643.4 857.8 150.4 197.8 55639.1 74184
70% 176.4 214.4 46.99 55.46 15239.4 18546
95% 99.74 71.48 30.11 23.82 8637.9 6182

To
ta

l
Sa

vi
ng

(%
) 40% 31.62 48.71 31.56 47.97 33.29 49.97

70% 32.98 44.87 32.47 42.78 39.01 49.88
95% 53.13 34.61 47.15 33.21 63.96 49.64

Table 5: Measured Area (mm2) of the overall system (memory, multiplier, accumulator and input/output buffers) for
baseline and proposed method.

Network LeNet-300-100 LeNet-5 modified VGG-16

Sparsity
Bit-width 4bits 8bits 4bits 8bits 4bits 8bits

O
ur

M
et

ho
d 40% 1.69 1.69 0.37 0.37 146.12 146.12

70% 0.42 0.42 0.09 0.09 36.53 36.53
95% 0.14 0.14 0.03 0.03 12.18 12.18

B
as

el
in

e
M

et
ho

d 40% 2.55 3.39 0.57 0.76 219.20 292.26
70% 0.71 0.86 0.16 0.20 60.05 73.07
95% 0.40 0.29 0.10 0.07 34.04 24.36

To
ta

l
Sa

vi
ng

(%
) 40% 33.62 50.16 34.62 50.71 33.34 50.00

70% 40.15 50.63 43.15 52.74 39.16 50.01
95% 65.16 51.85 68.18 57.40 64.23 50.02

4 Conclusions

In this paper we propose a new method of indexing to use a sparse network for inference, to enhance the memory usage
and energy efficiency of DNNs. To achieve that, we have utilized an LFSR based indexing by generating two pseudo
random sequence as indices instead of saving the indices in a separate memory. The generated indices are used to
decide which weights need to be pruned and which ones to be retained. We show that our method can prune large
networks without loss of accuracy. In addition, we demonstrated, a maximum of 63.96% power savings and 68.18%
area savings across varying sparsity, indexing bit-widths can be achieved.
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