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Abstract—The problem of imaging transmission line
impedance profiles for fault location is considered. The
approach utilized makes use of a novel adaptive probing
sequence. The sequence is constrained to be unimodular and
trained to obtain the minimized mean square error between the
channel estimate and the true channel response. To achieve a
practical approach for the reconstruction process, bandlimited
passband signals are also considered so that the method can be
applied to real systems with a limited bandwidth. This imposes a
challenge as only bandlimited information is available for profile
reconstruction. Therefore a technique for exact reconstruction
with bandlimited signals is also proposed. Results are provided
and it is demonstrated that the use of bandlimited passband
signals performs well for transmission line impedance profile
reconstruction under various conditions.

Index Terms—transmission lines, impedance profiling, adaptive
signal processing, digital signal processing, VLSI, PAPR

I. INTRODUCTION

F
AULT detection and fault location in electrical networks

has become more important as systems, VLSI circuits

and infrastructures become more dependent on wired and op-

tical networks [1], [2]. For example in the fabrication process

of VLSI circuits, transmission line defects can occur, and these

need to be identified [3]–[5]. To detect sharp discontinuities

or hard faults along transmission lines, reflectometry-based

techniques are widely used [1]. Methods have also been

developed for detecting small variations in impedance and

these are often classified as soft faults, which are smooth and

localized inhomogeneities in the transmission lines [2]. These

are early indications that a cable is starting to lose its reliability

or that the VLSI defects are more subtle and might lead to

intricate problems if left undetected. While reflectometry is

known to effectively detect hard faults, it is inadequate for

identifying weak faults [6]. Therefore, alternative methods

have been proposed for the detection of soft faults [2], [7],

[8].

In this paper, we make contributions to the reconstruction

of impedance profiles in transmission lines for the detection

of both hard and soft faults. Our reconstruction approach is

formulated in the practical context of bandlimited passband

signals that are modulated onto a carrier. This allows systems

that only operate in specific frequency bands and bandwidths

to utilize the technique to perform self diagnosis of faults.

Furthermore, unimodular signals are considered so that the

peak-to-average ratio (PAPR) characteristics of the signals are

close to unity for supporting efficient power amplifier design

[9]. The method utilizes a novel adaptive sequence approach

in determining the probing signals. It involves updating a

short probing sequence (3 symbols) based on the received

reflected signals to achieve a minimized mean square error

between the channel estimate and true channel response. To

meet the challenge of the limited information obtained about

the impedance profile, due to the bandlimited passband signals

utilized, a novel method based on sample accumulation is

proposed to obtain exact reconstruction of certain impedance

profile types.

Impedance profiling can be considered a type of one-

dimensional imaging and shares some characteristics with

higher-dimensional imaging such as tomography, ultrasonic

and medical imaging, remote sensing, and radar [10]–[13].

Generally, imaging can be formulated as an inverse scattering

problem whereby a target is probed by transmit pulses so that

the target can be reconstructed based on the measured reflected

signals. Research on one-dimensional inverse scattering for

detecting soft faults, [2], [7] has experimentally demonstrated

that accurate reconstruction of transmission line impedance

profiles is possible. The approach in [7] provides intuitive

insight between the empirical process of reflectometry and the

exact methods based on Zakharov-Shabat (ZS) equations [14].

We use that approach [7] in the results presented here.

The remainder of the paper is organized as follows. In

Section II, we describe the transmission line model. In Section

III, we introduce the formulation for the adaptive sequence

design. In Section IV, numerical simulations are provided

followed by conclusions in Section V.

II. TRANSMISSION LINE MODEL

To consider defects in the transmission line, we use Z(z) to

represent the distributed characteristic impedance, where z is

the longitudinal axis of the line. The transmission line length

is denoted as a and it is excited by a voltage source which



has an angular frequency ω at the left end and matched to a

load at the right end. The impedance is then defined as

Z(z) =

√

L(z)

C(z)
, (1)

where L(z) and C(z) are the inductance and capacitance at

any point z. The wave speed c(z) is expressed as c(z) =
1/
√

L(z)C(z). We also define the wavenumber as k = ω/c(0)
and the refractive index as v(z) = c(0)/c(z). A time harmonic

variation of e−jωt is assumed such that the total voltage and

current at any point z can be written as V (z, k) and I(z, k).
Assuming that a fault is present in the line, an incident voltage

Vinc(z, k) will cause a scattered voltage Vs(z, k) to exist. The

return loss or reflection coefficient S11(k) is then obtained by

taking the ratio of the measured data set at the source Vs(0, k)
and the given excitation Vinc(0, k) such that

S11(k) =
Vs(0, k)

Vinc(0, k)
. (2)

This S11(k) parameter can be measured in practice using a

vector network analyzer (VNA). The Liouville transform is

invoked to convert the spatial length z into the electrical length

x. This is performed to remove the effect of varying wave

propagation speed along the line by evaluating

x(z) =

∫ z

0

v(s)ds. (3)

The total electrical length becomes b = x(a) and x = [0, b].
In this work, the excitation or probing signal Vinc(0, k) is

composed of pulses or a sequence that will be modulated by

a carrier frequency for practical purposes. This sequence is

passed through an adaptive sequence algorithm, as described

in the next section, to obtain the optimum sequence and the

optimum estimate of the channel. At the end of the iterative

process, the optimum channel estimate is used to reconstruct

the impedance profile using the expression [7]

Z(x) = Z(0) exp

(
∫ 2x

0

2F−1[S11(k)](s)ds

)

. (4)

This expression is based on the Born approximation and

performs well for a wide range of impedance variations [7].

The final step is to transform the electrical coordinate x back

to the spatial coordinate z using

z(x) =

∫ x

0

ds

v(s)
. (5)

III. CHANNEL MODEL AND SEQUENCE DESIGN

The system for imaging the transmission line impedance

profile is shown in Fig. 1. The probing signals Re{u(t0)} and

Im{u(t0)} are passed through a raised-cosine pulse shaping

filter (to form the bandlimited response) and modulated at a

carrier frequency ωc = 2πfc. These signals are passed through

the transmission line whose characteristics are denoted by h(t)
in Fig. 1. The impulse response h(t) is the temporal Fourier

Transform of the reflectivity S11(k) in eq. (2). Once the signal

passes through the channel at the receiving side, the signal is

demodulated and passed through a matched filter. Finally, the

signal is downsampled.

h(t)

LPF

LPFn(t)

2cos(𝜔ct)

-2sin(𝜔ct)

cos(𝜔ct)

-sin(𝜔ct)

Re{u(t0)}

Im{u(t0)}

yr(t0)

yi(t0)

t → t0

t → t0

rc(t)

rc(t)

rc(t)

rc(t)

Fig. 1: System Set-up

The challenge of the design of the system shown in Fig. 1

is the design of the input signals so that the resulting output

signals can be processed to determine an estimate of h(t)
and subsequently utilized in eq. (4) for reconstruction. In this

paper, we examine the design of the excitation signal realized

by a unimodular sequence u(t) (for good PAPR characteris-

tics) with sequence length N . In practice u(t) is the voltage

excitation Vinc(0, k). This sequence [u1u2 · · ·uN ] is iteratively

updated during the estimation process to increase the accuracy

of the channel estimate by adaptation based on the resulting

received output at each iteration. That is, we send a sequence

of length N , use the resulting received output to form another

sequence of length N that can produce a better estimate of the

channel and so on. The total number of iterations or rounds is

denoted as l. We use the PAPR-constrained adaptive sequence

design based on approach proposed from [9].

The sampled channel impulse response h(t0) with length

K is estimated from the information provided by the received

sequence y(t0) obtained by taking the discrete convolution of

channel and input signal. A noise vector n(t0) is then added

denoted by [n1n2 · · ·nN+K−1]. In matrix form, this operation

can be written as

y =







y1
...

yN+K−1






=













u1 0
...

. . . u1

uN

. . .
...

0 uN



















h1

...

hK






+







n1

...

nN+K−1






(6)

which can be further simplified by defining Su = T (u), with

size (N + K − 1) × K, as a Toeplitz convolution matrix of

the input sequence u to give

y = Suh+ n. (7)

Given the observation y, a channel estimate ĥ is obtained by

using a nested loop based from mathematical formulation that

uses majorization-minimization framework [9]. It begins with

an initial randomly selected unimodular sequence that updates

until the mean square error function is minimized. Then, a

channel estimate is obtained when the converged sequence

is transmitted to the channel. After the number of training

rounds l is complete, the final channel estimate is retrieved

for the reconstruction of the impedance profile. In total, N × l
samples will have been transmitted in the process. It should

also be noted that using a short (N = 3) sequence length

N trained for several rounds, say l = 256, usually obtains

greater accuracy than using a long sequence trained for less

rounds, say N = 768 transmitted once (l = 1). Hence for this

procedure, shorter sequence N with more training rounds l is

selected.



IV. EXACT RECONSTRUCTION USING ACCUMULATION

The problem with the bandlimited passband system ap-

proach shown in Fig. 1 is that only information about h(t) is

known over a limited band. For the proper reconstruction of the

impedance profile using eq. (4) we need a wideband estimate

of S11(k) (or equivalently h(t) in time-domain). However we

only have a bandlimited passband estimate. To resolve this,

steps can be added prior to downsampling at the receiving

end using sample accumulation.

The objective of the sample accumulation method is to

recover the received signal similar to when wideband baseband

pulses are transmitted. This is accomplished by realizing that

for some fault profile types, such as rectangular profiles, the

channel frequency response is periodic and hence, obtaining

a portion of the channel is sufficient to estimate the entire

channel response. This can be performed by first equalizing

out the effect of the RC pulse shaping filters within the

bandwidth of the transmit signal. Then, we undo the spreading

effect of the low pass filters by accumulating the samples

within a range defined by an oversampling factor, γ. This

factor is obtained by taking the ratio of the sampling frequency

of the carrier and the actual carrier frequency. The details of

the process are shown in Algorithm 1. The intuition behind this

is to combine the energy of the samples every γ to the point

where the maximum sample value occurs. We identify the

boundary of the accumulation range to avoid having multiple

accumulation points in the same range. This is done by

defining position p as the initial point and k as the location of

the maximum value from p to γ. Finally, a phase compensation

ejωct is introduced to shift the received signal back to its

baseband equivalent.

Algorithm 1 Sample Accumulation

1: Initially set y(t) = 0, α = 1, p = 2
2: repeat

3: k = position ofmax {y(ti)}within [p, αγ + 1]
4: Accumulate y(tp+k−1) =

∑αγ+2

i=p y(ti)

5: p = position ofmax
{

γ(α− 1) + k + γ
2
, αγ + 2

}

6: α← α+ 1
7: until α = N +K − 1

V. NUMERICAL SIMULATIONS

To demonstrate the approach, we employ numerical sim-

ulations of bandlimited baseband and passband signals for

channel estimation and profile reconstruction characterized

by a rectangular impedance profile Z(z). Standard reflection

and transmission transformation formulas [15] were used to

obtain the measurement data set of the inverse problems in

determining the reflection coefficients at the left end. Since the

impedance profile is continuous along the transmission line,

the transformation formulas were discretized and concatenated

over each interval.

For our numerical simulations, a step size of ∆z = 0.0001
m is selected. We assume that the capacitance is fixed at

C = 0.01 nF/m and the characteristic impedance is Z(0) =
50 Ω. Then, the resulting inductance and wave speed are

L(0) = 250 nH/m and c(0) = 2× 108 m/s respectively. Since

the capacitance is assumed to be constant along the line, the

electrical length x can be converted to spatial coordinate z
using the reconstructed Z(x).

A sequence length N = 3 is sent l = 28 rounds in the

channel. Each symbol is separated by Tsy = 0.5 ns resulting

in fsy = 2 GHz bandwidth. This is modulated by fc = 4
GHz carrier frequency, which is discretized and sampled at a

rate of fcs = 20 GHz. The minimum oversampling factor,

γ is obtained by taking the ratio of fcs and fc. In this

simulation, we use γ equal to 10. The factor γ is considered

for the downsampled signals and continuous time passband

signals. Thus, the reflection coefficient for the baseband case

is observed over the frequency range of 0 to 1 GHz, while the

passband case is from 3 to 5 GHz. Later, the effect of noise

is also considered which satisfies CN (0,W), where W is the

noise variance.

We consider a rectangular impedance profile in which the

peak impedance deviation is selected to be 5% of Z(0), which

in this case is 2.5Ω. This ensures that the Born approximation

will perform well since Z(z) is close to Z(0). This isolates

the performance of the approximate reconstruction process eq.

(4) for better evaluation of the adaptive sequence design. The

performance of the algorithm and reconstruction is measured

by the average absolute relative error over z and expressed by

erel =
1

z

∫ z

0

∣

∣

∣

∣

ZBorn(l)− Zexact(l)

Zexact(l)

∣

∣

∣

∣

dl. (8)

This metric of error provides a direct assessment of the

reconstructed profile in comparison to the exact profile to allow

comparison of different transmit signals and its respective

reconstruction performance.

A. Baseband Set-up

This set-up demonstrates the reconstruction performance

of the adaptive sequence design in noiseless condition using

wideband baseband pulses. Specifically, we consider a 2 m

transmission line and the results are shown in Fig. 2. It can be

seen that the designed sequence is effective in recovering the

impedance profile Z(z) with varying fault lengths, each with

a relative error erel of 2.7%, 2.8%, 2.9%, and 5.4% for Fig. 2

(a)-(d) respectively. These results also serve as a reference for

the simulations of the passband case.

We also compare the performance of the unimodular se-

quence to a single impulse signal approach [7]. In order to

make the measurements comparable, the impulse signal is

scaled such that the total transmit energy is the same as

when multiple rounds of the unimodular sequence is used.

The results of the simulation are averaged over 50 trials and

the transmit SNR is varied from -10dB to 10dB. It can be

seen in Fig. 3 that at -10dB, there is a 42% decrease in error

rate using the unimodular sequence. As the transmit SNR is

increased, say at 10dB, the percentage error difference between

the two transmit signal approaches becomes smaller. This

implies that the proposed algorithm is effective, especially in

noisy conditions which is typically the case in useful scenarios.



Fig. 2: Reconstruction of baseband case with different fault lengths:
(a) 0.3m, (b) 0.4m, (c) 0.5m, (d) concatenated 0.4m fault.

Fig. 3: Comparison at different transmit SNR

B. Passband Set-up

In this section, the effect of a bandlimited sequence in the

reconstruction process is evaluated. The reconstructions are

shown in Fig. 4, in which we can see varying results. It is

interesting to note that a good reconstruction is made when

the fault length is 0.5 m. However, this is coincidental as its

channel frequency response is periodic at 4 GHz. For the rest

of the fault lengths, reconstruction error starts to manifest itself

after the downward edge of the rectangular profile. A similar

trend can also be observed for a profile with two concatenated

faults of 0.4m in Fig. 4(d).

We then implement the proposed method with sample

accumulation and the results are shown in Fig. 5. Results

demonstrate significant improvement compared to the standard

passband case. The errors erel corresponding to Fig. 5 (a)-

(d) are 5.5%, 4.2%, 4.7%, and 9.9% respectively, which are

relatively close to the baseband results. This implies a suc-

cessful reconstruction of the rectangular impedance profiles.

Finally, the effect of noise in the reconstruction is considered

and tested by adding white Gaussian noise to a channel with

0.4 m fault length. Results are shown where the transmit SNR

for Fig. 6 (a)-(d) are 10dB, 3dB, -3dB, and -10dB, and its

corresponding error erel are 6.6%, 8.28%, 10.0%, and 22.6%
respectively. It can be noticed that reconstruction quality starts

to be affected at -3dB and breaks down at -10dB. Overall,

results suggest that the added procedure is able to estimate

the entire channel and successfully reconstruct rectangular

profiles.

The proposed approach with sample accumulation can work

for any impedance profile with a sparse channel impulse

response, such as the tested rectangular case. Obtaining ex-

perimental results is tthe next step that needs to be taken to

verify the results in actual transmission line scenarios. Several

factors that could affect the experimental set-up, such as non-

linearities and local oscillator leakage, are left for future work.

Fig. 4: Reconstruction of passband case with different fault lengths:
(a) 0.3m, (b) 0.4m, (c) 0.5m, (d) concatenated 0.4m fault

Fig. 5: Passband case with accumulation in different fault length: (a)
0.3m, (b) 0.4m, (c) 0.5m, (d) concatenated 0.4m fault

Fig. 6: Test on different transmit SNR: (a) 10dB, (b) 3dB, (c) -3dB,
(d) -10dB

VI. CONCLUSION

We have demonstrated the use of bandlimited passband

signals with adaptive sequence design to obtain reconstructions

of impedance profiles. While the use of passband signals

limits the channel information for reconstruction, rectangular

profiles can be estimated effectively by compensating for

the modulation and demodulation of the passband sequence

using sample accumulation. This is possible since rectangular

profiles have sparse channel impulse response. Overall results

from the simulations have demonstrated that the proposed

method performs well.

ACKNOWLEDGEMENT

We would like to thank the Hong Kong Research Grants

Council for their grant 16232316.



REFERENCES

[1] Y.-J. Shin, E. J. Powers, T.-S. Choe, C.-Y. Hong, E.-S. Song, J.-G. Yook,
and J. B. Park, “Application of Time-Frequency Domain Reflectometry
for Detection and Localization of a Fault on a Coaxial Cable,” IEEE

Transactions on Instrumentation and Measurement, vol. 54, no. 6, pp.
2493–2500, 2005.

[2] Q. Zhang, M. Sorine, and M. Admane, “Inverse Scattering for Soft
Fault Diagnosis in Electric Transmission Lines,” IEEE Transactions on

Antennas and Propagation, vol. 59, no. 1, pp. 141–148, 2011.
[3] Y. Takamatsu, T. Seiyama, H. Takahashi, Y. Higami, and K. Yamazaki,

“On the Fault Diagnosis in the Presence of Unknown Fault Models
using Pass/Fail Information,” in 2005 IEEE International Symposium

on Circuits and Systems (ISCAS). IEEE, 2005, pp. 2987–2990.
[4] V. Fochi, E. Wächter, A. Erichsen, A. M. Amory, and F. G. Moraes, “An

Integrated Method for Implementing Online Fault Detection in NoC-
based MPSoCs,” in 2015 IEEE International Symposium on Circuits

and Systems (ISCAS). IEEE, 2015, pp. 1562–1565.
[5] A. M. Gharehbaghi and M. Fujita, “A New Approach for Diagnosing

Bridging Faults in Logic Designs,” in 2017 IEEE International Sympo-

sium on Circuits and Systems (ISCAS). IEEE, 2017, pp. 1–4.
[6] L. A. Griffiths, R. Parakh, C. Furse, and B. Baker, “The Invisible Fray:

A Critical Analysis of the Use of Reflectometry for Fray Location,”
IEEE Sensors Journal, vol. 6, no. 3, pp. 697–706, 2006.

[7] W. Wang, L. Jing, Z. Li, and R. D. Murch, “Utilizing the Born and Rytov
Inverse Scattering Approximations for Detecting Soft Faults in Lossless
Transmission Lines,” IEEE Transactions on Antennas and Propagation,
vol. 65, no. 12, pp. 7233–7243, 2017.

[8] W. Wang, Y. Li, Z. Li, and R. Murch, “Super-resolution Results for a 1D
Inverse Scattering Problem,” in ICASSP 2019-2019 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 4240–4244.

[9] Z. Wang, P. Babu, and D. P. Palomar, “Design of PAR-Constrained
Sequences for MIMO Channel Estimation via Majorization–
Minimization,” IEEE Transactions on Signal Processing, vol. 64,
no. 23, pp. 6132–6144, 2016.

[10] W.-M. Boerner, “Electromagnetic Inverse Methods and its Applications
to Medical Imaging - A Current State-of-the-Art Review,” in IEEE

International Symposium on Circuits and Systems (ISCAS). IEEE, 1989,
pp. 999–1006.

[11] N. Weng, Y.-H. Yang, and R. Pierson, “Three-dimensional Surface
Reconstruction using Optical Flow for Medical Imaging,” IEEE Trans-

actions on Medical Imaging, vol. 16, no. 5, pp. 630–641, 1997.
[12] A. Khwaja and X.-P. Zhang, “Compressed Sensing SAR Moving Target

Imaging in the Presence of Basis Mismatch,” in 2013 IEEE International

Symposium on Circuits and Systems (ISCAS). IEEE, 2013, pp. 1809–
1812.

[13] F. Wang, T. F. Eibert, and Y.-Q. Jin, “Simulation of ISAR Imaging
for a Space Target and Reconstruction under Sparse Sampling via
Compressed Sensing,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 53, no. 6, pp. 3432–3441, 2015.
[14] A. Shabat and V. Zakharov, “Exact Theory of Two-dimensional Self-

focusing and One-dimensional Self-modulation of Waves in Nonlinear
Media,” Soviet Physics JETP, vol. 34, no. 1, p. 62, 1972.

[15] D. M. Pozar, Microwave engineering. John Wiley & Sons, 2009.


