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ABSTRACT

Advanced Encryption Standard (AES) implementations on Field
Programmable Gate Arrays (FPGA) commonly focus on maximizing
throughput at the cost of utilizing high volumes of FPGA slice logic.
High resource usage limits systems’ abilities to implement other
functions (such as video processing or machine learning) that may
want to share the same FPGA resources. In this paper, we address
the shared resource challenge by proposing and evaluating a low-area,
but high-throughput, AES architecture. In contrast to existing work,
our DSP/RAM-Based Low-CLB Usage (DRAB-LOCUS) architecture
leverages block RAM tiles and Digital Signal Processing (DSP) slices
to implement the AES Sub Bytes, Mix Columns, and Add Round Key
sub-round transformations, reducing resource usage by a factor of
3 over traditional approaches. To achieve area-efficiency, we built
an inner-pipelined architecture using the internal registers of block
RAM tiles and DSP slices. Our DRAB-LOCUS architecture features
a 12-stage pipeline capable of producing 7.055 Gbps of interleaved
encrypted or decrypted data, and only uses 909 Look Up tables, 593
Flip Flops, 16 block RAMs, and 18 DSP slices in the target device.

CCS CONCEPTS
+ Hardware — Hardware accelerators; High-speed input / out-
put.
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1 INTRODUCTION

As the Advanced Encryption Standard (AES) lies at the core of many
important security operations—ranging from securing network
connections to full disk encryption—improvements to performance
and efficiency can benefit a large and diverse set of systems. One
means to achieve this performance increase is through the use
of hardware acceleration. For instance, a number of studies have
leveraged field programmable gate arrays (FPGAs) for accelerating
AES [15].! While these FPGA-based AES architectures achieve high
throughput, they typically do so at the cost of high resource usage
on the FPGA, i.e., monopolizing large quantities of components
such as flip flops and look up tables. While higher throughput is
valuable, we argue in this paper that area-efficiency is often an
equally important design goal for AES architectures.

!While application-specific integrated circuits (ASICs) offer an alternative approach to
hardware acceleration, their high non-recurring engineering cost and limited flexibility
makes them less attractive than FPGAs for use in low-cost systems.
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Area-efficiency, intuitively, is a measure of how effectively the
AES architecture capitalizes on the FPGA’s resources. The key chal-
lenge is not only making effective use of under-utilized components
(such as digital signal processing slices), but understanding the phys-
ical layout of those components and incorporating that knowledge
into the AES architecture. However, the potential payoff is great as
area efficient designs offer substantial benefits over those focusing
purely on throughput. Most notably, area-efficiency opens up possi-
bilities for using hardware-accelerated security in new domains. A
variety of embedded systems simply cannot implement strong, effi-
cient encryption due to processor limitations or other constraints
(e.g., power)—FPGA-based approaches are a promising way to over-
come these challenges and enable cryptographic security primitives
on constrained embedded systems. Indeed, manufacturers have be-
gun releasing cheap system-on-a-chip (SoC) platforms that feature
co-located FPGAs and CPUs. However, without area-efficient AES
designs, the system developer may have to choose between security
and other operations that benefit from hardware acceleration, such
as deep learning [5, 17] or video processing [6]. An area-efficient
AES architecture would allow other types of hardware acceleration
to run concurrently on the same FPGA.

In this paper, we propose a novel AES architecture that considers
resource-efficiency as a first-order design principle, balancing re-
source usage and throughput. Key to our design is the use of block
RAM and digital signal processing slices—resources that are largely
ignored (or under-utilized) by prior works [15]—to efficiently im-
plement the AES sub-round transformations without the need for
large numbers of logic slices. The DSP/RAM-Based Low-CLB Usage
(DRAB-LOCUS) architecture offers several advantages over existing
approaches, including: (i) high throughput on cheaper hardware; (ii)
more efficient use of FPGA resources, including those left unused
by most existing AES architectures; and (iii) more functionality,
allowing for concurrent encryption and decryption on multiple
blocks. We summarize our contributions as follows:

e We present the resource-efficient DRAB-LOCUS AES archi-
tecture which uses just 593 flip flops and 909 look up tables.
The design leverages block RAM and digital signal process-
ing resources to implement the sub-round transformations
and build a 12 stage pipeline. We use the pipeline to con-
struct an iterative and inner-pipelined datapath that is able
to process 12 independent blocks of data at any time. Fur-
thermore, we use this architecture to produce 7.055 Gbps
of data and can arbitrarily switch between encryption and
decryption for any block in the datapath.

e We provide a deeper understanding of different AES ar-
chitectures, exploring the fundamental trade-offs between



throughput, resource usage, and power consumption. For
instance, increasing the number of stages in a pipeline with-
out increasing resource usage yields high resource-efficiency.
These findings have implications beyond AES and can in-
form the design of resource-efficient architectures for other
algorithms, both cryptographic and otherwise.

e We propose new metrics for evaluating implementation effi-
ciency in Section 5.2 that incorporate other resource types
like block RAM and digital signal processing resources. For
example, we consider throughput per look up table and
throughput per flip flop, when before, previous studies con-
sider only throughput per slice. These metrics provide a
more complete evaluation of how effectively an implementa-
tion uses its resources to achieve high speed data processing,
which can help designers to make informed decisions about
which implementations to include in their system.

e We present a case study in co-location of hardware accelera-
tors with AES implementations in embedded systems. This
investigation explores what types of implementations may
be more appropriate alongside different deep learning and
video processing applications. We analyze whether using
fully-unrolled AES architectures is feasible when resources
are shared with other accelerators, and discuss the secu-
rity benefits of area-efficient implementations in resource-
constrained environments.

In Section 2 we discuss pertinent background topics for AES and
FPGAs and then present our methodology for creating a high-speed
and area-efficient AES architecture in Section 3. We present our
DRAB-LOCUS implementation in Section 4 and evaluate its perfor-
mance and efficiency compared to other recent AES architectures
in Section 5. Additionally in Section 5, we recommend new metrics
and standards for reporting and analyzing AES implementations.
We present our co-location case study considering AES implemen-
tations and other hardware accelerators in Section 6, and provide a
brief analysis of related non-area-efficient work in Section 7.

2 BACKGROUND

This section introduces the basics of the Advanced Encryption Stan-
dard and the structure and components of FPGAs. The discussion of
the DRAB-LOCUS design in Section 3 heavily references the topics
introduced in this section.

2.1 The Advanced Encryption Standard

The block cipher Rijndael is the base algorithm for the National Insti-
tute of Standards and Technology’s Advanced Encryption Standard
(AES). Selected for its simple architecture and easy implementa-
tion in both hardware and software, many studies have focused
on designing efficient digital circuit realizations of AES and imple-
menting them in Field Programmable Gate Arrays (FPGA) [15].

2.1.1 AES Structure. AES is a symmetric-key block cipher with
support for 128, 192, and 256-bit keys. The cipher utilizes four
sub-round transformations and a key schedule, and treats a 128-bit
input block as a 4 byte by 4 byte two-dimensional array called
the cipher state. The cipher state passes through the sub-round
transformations 10, 12 or 14 times (rounds) based on the key size [1].
We list the sub-round transformations and key schedule below.
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(1) Sub Bytes: A non-linear transformation performed by re-
placing an input byte based on a fixed look up table. The
non-linear substitutions can also be calculated at runtime.

(2) Shift Rows: A linear transformation on the rows of the state
block, where each row is rotated a fixed number of positions.

(3) Mix Columns: A linear transformation performed by mul-
tiplying the state block by a constant block using standard
matrix multiplication.

(4) Add Round Key: A linear transformation that consists of
adding the state block to a round key derived from the initial
cipher key.

(5) Key Schedule: An iterative process that expands the initial
128-bit key into 10 round keys by substituting bytes and
rotating 32-bit words from the original and subsequent keys.

2.1.2  AES Mathematics in Hardware. Mathematical operations in
AES are performed on individual 8-bit values in GF(2%), a common
algebraic finite field used in computer-based arithmetic. Elements
in this field are commonly represented as polynomials of degree 7
with binary coefficients. Essentially, this is the finite field of two
elements extended to contain 8-term polynomials. By definition,
both addition and multiplication, as well as their inverses, can be
performed on any element in the field.

When represented as 8-bit binary strings, addition can be per-
formed by calculating the exclusive or (XOR) of two elements. Mul-
tiplication is slightly more complicated, and can be implemented
using a binary left shift followed by an XOR reduction with a prim-
itive polynomial that generates GF(23). These simple operations in
the field lend themselves to easy implementation in digital circuits,
which commonly contain both XOR and shifting components. This
close relationship between the cipher mathematics and digital hard-
ware resources makes AES an attractive cryptographic primitive
for implementation in digital systems.

2.2 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGA) are reconfigurable digital
logic devices that comprise combinatorial and sequential logic ele-
ments with a programmable interconnect that allows digital design
engineers to rapidly prototype systems and update them in the
field. Unlike Application-Specific Integrated Circuits, FPGAs do not
require long and expensive fabrication periods and are useful for
frequent hardware changes. As FPGAs are often used alongside a
traditional CPU to provide optimized hardware processing, there
are more devices on the market today that include CPUs and FP-
GAs into a single system on a chip to provide tight integration of
software and custom hardware. Because of this, FPGAs are popular
platforms for implementing hardware accelerators for applications
such as cryptography, deep learning, and video processing. Us-
ing hardware accelerators can reduce CPU overhead by offloading
processing-intensive tasks.

Below we discuss the primary components of the Xilinx 7-series
FPGAs that we utilize in our DRAB-LOCUS architecture: config-
urable logic blocks, block RAM, digital signal processing slices, and
clock regions. We also discuss finite state machines, a common
control scheme for managing dataflow through FPGAs. For a more
complete introduction to FPGAs, see the survey by Kuon et al [7].
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2.2.1 Configurable Logic Blocks. The majority of the FPGA con-
sists of look up tables (LUTs) and flip flops combined into units
called configurable logic blocks (CLBs). LUTs implement combinato-
rial logic functions such as AND, OR, XOR, and basic math functions,
where the result of the function is stored for all possible combina-
tions of inputs. Flip flops are sequential storage units that run on a
clock. On each edge of the clock, flip flops store data on the input,
and hold it on the output until the next clock edge [19].

LUTs offer two primary advantages over using individual logic
gates. First, they are able to implement large functions in a sin-
gle component that would normally require a high number of
gates. This allows the FPGA to have a compact architecture that
increases its capacity for logic functions. Second, the delay through
the longest sequence of logic elements between two flip flops is
easier to predict. This sequence is also called the critical path. With
logic gates, each component can have a different time delay from
when an input arrives and to when the gate produces an output.
These varying delays make it difficult to calculate the total delay of
the critical path. With LUTs, each component has a nearly identical
delay, so the critical path delay is determined by simply multiplying
the LUT delay by the number of path components.

Configurable logic blocks are organized in columns and rows
within the FPGA to simplify the connections made between each
logic element and achieve high-speed data rates. Each logic block is
further divided into two logic slices that contain multiple LUTs and
flip flops. Refer to Appendix A for further discussion of the layout
of FPGAs and logic slices. As the most abundant components of
the FPGA, logic blocks have been highly optimized for speed and
flexible routing. For designs that primarily use slice logic, FPGA
design tools have higher flexibility for choosing locations at which
to implement logic functions. However, usage of other resources
such as I/O ports, clock buffers, processor interfaces, block RAM,
and digital signal processing slices (discussed next) can influence
where designs place logic in the FPGA.

2.2.2  Block RAM. The second common resource in Xilinx 7-series
FPGAs are block RAM tiles, which are 36 kilobit memories acces-
sible from within the FPGA. Block RAMs support true dual-port
access models, where each port (a or b) can run on an independent
clocks and have separate addresses and write enables. Our architec-
ture uses the dual-port functionality to utilize a single block ram
to perform look up operations on two bytes of the cipher state, as
discussed in Sections 3.1.1 and 3.1.3.

Xilinx block RAM supports data widths up to 32 bits wide, and
can be divided into any number of storage locations, as long as the
number of data address can be encoded in 16 bits. Depending on
the size of the needed memory, block RAM tiles may be configured
as two separate 18 kilobit blocks, or a single 36 Kb block. Refer to
Appendix A for further discussion of block RAM.

Block RAM memory look ups have a latency of one cycle by
default, however they also contain a built-in register that can delay
output data by an extra clock cycle. This is useful because the block
RAM devices write output data late in the clock cycle, which makes
it difficult for the output to reach other sequential elements in time
for the next rising edge. By enabling the output register, outputs
from block RAM will appear soon after the rising edge, and have

more time to travel through the critical path and reach the next
sequential element.

2.2.3 Digital Signal Processing Slices. The last relevant Xilinx 7-
series resources are the Digital Signal Processing (DSP) slices. DSP
slices were introduced to FPGAs to increase signal processing capa-
bilities for digital and analog signal applications. These blocks can
implement a number of mathematical and logical operations on
48-bit wide inputs, and are organized in the FPGA for high speed
daisy-chaining along vertical paths in the fabric. Optionally, input
data can be delayed by 1 or 2 clock cycles using the internal registers
for implementing digital signal filters, or for decreasing delays be-
tween connected components for meeting timing constraints [20].
We leverage the internal registers to build pipeline stages into our
design without having to use lots of flip flops from logic slices, as
discussed in Sections 3.1.1, 3.1.3, and 3.1.4. See Appendix A for more
details on DSP resources.

2.2.4 Clock Regions. FPGAs are divided into partitions called clock
regions, which consist of columns of logic blocks, block RAM, and
DSP slices. While each clock region has access to global clocks that
reach every section of the FPGA, they also contain dedicated paths
for local clock signals not accessible anywhere else. The organi-
zation of FPGAs into clock regions allows for more complicated
designs that require multiple distinct operating frequencies. One
further advantage is that if an FPGA is running a design that only
occupies a single clock region, it is possible to constrain the clocks
to only run in that region and avoid wasting power on sending the
signals to other parts of the device [21].

2.3 Finite State Machines

FPGA designs often require a control module that is responsible
for directing data, and configuring other parts of the design to
perform different actions. One of the most common techniques
for implementing controllers is to create a finite state machine
that modifies outputs based on inputs from the system. Finite state
machines are easily implemented in FPGAs, with flip flops that hold
the current state of the controller, and LUTs that calculate the next
state to transition to based on the state flip flops and any inputs to
the design. Due to the compact organization of LUTs and flip flops
in the logic slices, state machines are usually implemented in such
a way that they are able to run at any speed supported by other
components in the FPGA.

3 AREA-EFFICIENT DESIGN

We developed our FPGA-based DRAB-LOCUS AES architecture
by considering alternative resource usage strategies. In order to
develop an area-efficient and high-throughput implementation,
we considered a number of different high-level architectures and
sub-round transformation designs. Whereas other studies tend to
focus on optimizing a single section of the AES algorithm, we
set out to design a full architecture and consider how low-level
optimizations and design techniques would impact the cipher as
a whole. Throughout the design process, we used the following
performance indicators to gauge the effect our design decisions
would have on the overall architecture: (i) throughput, the number
of encrypted/decrypted bits produced each second, (ii) Latency, the



number of cycles elapsed before a block finishes all AES rounds, (iii)
resource usage, the number of flip flop, look up table, block RAM,
and DSP slices used across the FPGA.

There are a number of FPGA design techniques that can affect
these performance indicators. For example, running the design on
a faster clock will increase the throughput of the design, but make
it harder to use alternative resources like block RAMs and DSP
slices since they are placed farther apart. Logic slices are better
suited for high speed operation, which means more and more parts
of the design will need to run in logic slices as the clock speed
increases. However, placing flip flops in between block RAM and
DSP slices can reduce the critical path between these distantly
placed components, making it easier to use them and run at a high
clock rate. An example of this is discussed in Section 3.1.2.

The remainder of this section describes the full DRAB-LOCUS
design. We compare our design to other architectures in Section 5.
We leave the exploration of possible side channels and physical
layer attacks for future work and instead focus on the performance
and architectural advantages of our design.

3.1 Datapath Architecture

A range of architectures have been used in the past to implement
AES in hardware, each of which can be defined by whether it uses
pipelining or loop-unrolling techniques. In a pipelined design, reg-
isters are inserted into the datapath at regular intervals to increase
the amount of data that can be processed at one time. Further-
more, registers can be inserted inside of a single AES round, or
between subsequent copies of the round, given that the design uses
multiple round instances; these two techniques are referred to as
inner-round and outer-round pipelining, respectively [15].

In aloop-unrolled design, an entire round is instantiated multiple
times with data flowing sequentially through each copy, allowing
for data to continuously enter the cipher without any control mech-
anism. On the other hand, in an iterative architecture, data is fed
back into a single instance of the round multiple times. When paired
with inner and/or outer-round pipelining, designs can produce high
throughput at the expense of more resource usage (more pipeline
stages yield more flip flops).

We designed the DRAB-LOCUS architecture with an iterative,
inner-pipelined structure, allowing us to maximize throughput
while using few resources. This means the datapath mainly consists
of a single instance of each sub-round transformation, where data is
fed back through the design until it has completed 9 rounds, as can
be seen in Figure 1. While the iterative component of our design
minimizes resource usage by only instantiating the AES round once,
the inner-pipelined aspect requires more hardware registers, which
can be expensive depending on the number of pipeline stages. In
order to mitigate this, we use the built-in registers of the block RAM
and DSP slices to insert pipeline stages, as explained in subsequent
sections. All register stages are indicated by red dashed boxes in
the datapath figures.

We modify the iterative inner-pipelined structure to include two
extra instances of the add round key transformation (5,6) in order
to easily handle multiple blocks of data at the same time. With
a single instance of the add round key transformation (4), there
could be a case where two blocks need to pass through the same
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instance at the same time. For example, if one block exits the mix
columns transformation (3), and one block exits the shift rows
transformation (2) during its final round, both blocks have to pass
through the add round key transformation (4) next. With a single
instance, a controller would have to stall the entire datapath to
resolve the data conflict. By using three instances of the add round
key transformation (4,5,6), we avoid potential data hazards.

We were able to use this same architecture for both encryption
and decryption by using the equivalent inverse cipher [1]. This is
a modification to the AES decryption algorithm that reorders the
inverse sub-round transformations to be in the same order as their
encryption counterparts, with the only significant change being
required in the key schedule. In the equivalent inverse cipher, each
round key must pass through the inverse mix columns transforma-
tion (3) before being added to the cipher state in the add round key
transformation (4,6). To support this, we added connections to the
datapath before and after the mix columns transformation (3) for
the key schedule to perform inverse mix columns on each round
key. Additionally, we added connections before and after the sub
bytes transformation (1) to perform s-box lookups during round
key calculation, as discussed in Section 3.3.

As the DRAB-LOCUS architecture supports arbitrary switching
between encryption and decryption at every pipeline stage, the
key schedule must calculate all round keys and inverse round keys
during an initialization phase, so during cipher operation the key
schedule taps into the datpath are unused (Section 3.3). This means
that we can use an OR gate to multiplex sub-round transformations,
as the key schedule inputs are held at zero. This reduces the com-
plexity and connectivity of the controller, making the design easier
to implement. The only other requirement for using OR gates is
that the output of the add round key transformation (4) is reset
to zero when a new input is added to the datapath. The controller
triggers this reset using dedicated high-speed reset paths in the
FPGA, as discussed in Section 3.2. A high-level block diagram of
the data path with control and key schedule connections is shown
in Figure 1 and a schematic of the datapath can be seen in Figure 3.

3.1.1 The Sub Bytes Transformation. The DRAB-LOCUS architec-
ture performs the sub bytes transformation by using block RAM
tiles configured as ROM look up tables. This is one of two com-
monly used techniques, the other of which is to perform composite
field arithmetic in GF(2%) [15]. We chose to use the block RAM look
up table technique as this results in less utilization of slice logic.

The sub bytes design uses each byte of the input block as an
address into a block RAM look up table. There is enough space
to store the tables for both encryption and decryption such that
the encryption table resides in the first 2,048 bits of memory, and
the decryption table resides in the second 2,048 bits of memory.
Therefore, we use a single block RAM to perform both the sub bytes
and inverse sub bytes transformations, by prepending the mode for
the current block to each 8-bit address input to select between the
encryption and decryption tables.

Furthermore, since the Xilinx 7-series block RAM supports true
dual port interfacing, we use a single block RAM to perform lookups
for two bytes of the input block, as shown in Figure 2. To construct
the full sub bytes transformation, we replicate this structure 8
times in the full datapath. Although we strive to minimize resource
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Figure 2: Sub Bytes Transformation Design

usage, replicating the block RAM 8 times greatly simplifies the
DRAB-LOCUS architecture, as using a single block RAM would
add internal loops to the datapath. This would require additional
control logic and make it difficult to process multiple blocks with
different modes at the same time.

The sub bytes transformation adds two pipeline stages to the
datapath, where the first stage comes from the 1-cycle memory
look up, and the second from enabling the output registers built
into the block RAM. The DRAB-LOCUS architecture benefits from
the second stage in two ways. First, the lookup delay through the
RAM is slow, and can make it hard to implement the design in the
FPGA without causing timing issues. The output register makes it
easier to implement the design with a fast clock (as discussed in
Section 2.2.2). Second, as the second register is internal to the block
RAM, this increases the number of pipeline stages in the datapath
without requiring 128 flip flops from the logic slices. Both of these
features contribute to high throughput and low resource usage.

3.1.2  The Shift Rows Transformation. The design implements the
shift rows transformation using LUTs and flip flops from the logic
slices. Assuming that we only wanted to support encryption (or
decryption), we could statically maps input bytes to rotated output
bytes. However, because the DRAB-LOCUS architecture concur-
rently performs both encryption and decryption, the datapath uses
a switch made of LUTs and flip flops to choose between the rota-
tions for encryption or decryption depending on the mode needed
for the current block.

While using logic slices to implement shift rows requires the
use of 128 flip flops, this technique also allows the cipher to run at

ing to the two steps of matrix multiplication.

Byte Multiplication Lookup — The first step of matrix multi-
plication is to multiply elements of the two matrices together. We
load precomputed byte multiplications corresponding to the mix
columns matrix into block RAMs, which perform a lookup opera-
tion for each byte of the input block. Since the mix columns input
block is multiplied by a fixed matrix for encryption and decryption,
it is guaranteed that each byte of the input block is multiplied by
every byte of the fixed matrix at some point during the computation.
Furthermore, as each row of the fixed matrix is simply a rotational
permutation of the first row, each input byte will only be multiplied
by four different values. For example, each input byte is multiplied
only by 01 (twice), 02, and 03 for encryption; for decryption, each
byte is multiplied by 09, 0B, 0D, and 0E. Additionally, both matrices
have the same structure, but with different bytes. This allows us to
use the same storage structure in block RAM for encryption and de-
cryption. We discuss the storage format further in Appendix B. Each
input block byte is used as an address to look up the corresponding
32-bit multiplication results, and the mode (encryption/decryption)
is used to select the high or low 256 memory entries (similar to the
sub bytes transformation design).

We use the registers built into the block RAM to add another
pipeline stage to the datapath, again without using any flip flops.
Similar to the sub bytes design, this also enables the cipher to run
at higher frequencies, as the output register decreases the length of
the critical path within the mix columns instance.

Wide XOR - The second step of matrix multiplication is to add
all of the multiplied terms together to produce an element in the
output matrix. The design uses DSP slices to perform 48-bit wide
XORs on the outputs of the block RAM look up. We mix the block
RAM outputs together to form 4 48-bit vectors for the high 48 bits,
4 48-bit vectors for the middle 48 bits, and 4 32-bit vectors for the
remaining 32 low bits. Equation 1 shows an example of the standard



matrix multiplication for the first 4 output bytes during encryption,
and we use the patterns of matrix multiplication to concatenate
different output bytes from the block RAMs, such that addend terms
line up in the same position across four vectors. Refer to Appendix B
for more specific equations involving the block RAM outputs. We
assume that the input state is organized in column-major order as
shown in S, with sg ¢ containing the MSB.

Cipher State Layout
50,0 | 0,1 | 0,2 | S0,3
51,0 | S1,1 | S1,2 | 51,3
2,0 | S2,1 | S2,2 | $23
$3,0 | $3,1 | $3,2 | 833

Outy = 02 * S0,0 + 03 %510+ 01 %820+ 01%s30
Outy =01 = S0,0 + 02 % 51,0+ 03 %520+ 01%s30

1)

Outy = 01 * $0,0 + 01 %510+ 0220+ 03%s30
Outs = 03 % 50,0 + 01 % 51,0 + 01 %550 + 02 % 53 ¢

The 48-bit vectors pass into cascaded DSP slices, such that the
output of one slice is the input to another. A cascaded structure
improves the maximum operating speed of the DSP slices by using
dedicated short-distance routes between the slices. To operate this
part of mix columns at the same speed as the rest of the architecture,
we enabled internal DSP slice input and output registers, decreasing
the critical path between DSP slices and block RAMs.

The number of registers used for each DSP slice varies in order
to synchronize data through the cascade. For example, the inputs
to the second slice must be delayed by two cycles to account for
the 2-cycle delay through the first slice. In order to use an input
and output register in the first slice, a total of three delay cycles
are required for the third slice in the cascade. Since the DSP slices
only have 2 input registers, mix columns uses 128 flip flops from
the logic slices to acquire the third delay cycle. In total, the DSP
cascade tree adds four pipeline stages to the datapath, in addition
to the 2 stages from the block RAMs. The full mix columns design
is shown in the full datapath diagram (Figure 3).

3.1.4 The Add Round Key Transformation. The DRAB-LOCUS ar-
chitecture implements the add round key transformation using
DSP slices, similar to the second stage of mix columns. Since the
add round key transformation XORs two 128-bit values, only three
parallel DSP slices are needed, unlike mix columns, which cascades
sequential DSP slices. Since the DSP slices operate on 48-bit signals
and there is a 128-bit input, two DSP slices compute two 48-bit XORs
and one DSP slice computes one 32-bit XOR. In order to add more
pipeline stages to the datapath, and to decrease the critical path
between the add round key transformation and the mix columns
transformation and key schedule, the design enables two input
registers and one output register on each DSP slice.

For the two extra add round key instances in the initial and final
rounds of the cipher, the architecture only uses one input register,
since the DSP slices are only routed to the key schedule, and not
to block RAMs (as in the main-round instance). Since the initial
and final add round key instances are not part of the main datapath
pipeline, extra registers do not contribute to throughput, and instead
only increase the latency. Thus, by only using two register stages
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we maintain a shorter critical path to the key schedule and reduce
overall latency by two clock cycles.

One final component of the DSP slices we use are the reset inputs,
which hold the outputs at zero when a new block enters the pipeline,
or the key schedule is initializing the round keys. This reset signal,
and the data hazards it prevents, are discussed further in Section 3.2.
The three parallel DSP slices for the add round key instance can be
seen in the datapath in Figure 3.

3.2 Control Module

Since the datapath for our DRAB-LOCUS architecture has an itera-
tive inner-pipelined structure, we designed a controller to ensure
that each block passes through the transformations the appropriate
number of rounds and to prevent data collisions when a new block
enters the datapath. Since the design processes multiple blocks
at the same time, new input blocks have to be synchronized into
the datapath so as to not interfere with data in the pipeline. We
designed the control module so it meets the following requirements:

(1) Track each block as it moves through the datapath until it is
ready to pass through the final add round key instance.

(2) Pass the mode of operation (encryption/decryption) for each
block to the sub-round transformation it is currently in.

(3) Stall new inputs to the cipher when data in the pipeline is
moving from add round key to sub bytes.

(4) Reset the output of the initial add round key instance until a
new block of data is ready to enter the pipeline.

(5) Hold the output of the add round key instance in reset when
a new block of data enters the pipeline.

(6) Hold the add round key and shift rows instances in reset
while the key schedule calculates round keys.

The controller fulfills requirement 1 by using 12 113-bit-long
shift registers to track each block as it travels through each stage
of the pipeline and iterates through the datapath until the final add
round key transformation. We implement these using LUTs from
the M-type logic slices, which feature LUTs with clock inputs that
can be used as 32-bit shift registers, as long as the only bit that
needs to be accessed is the final bit [19]. Since the DRAB-LOCUS
controller only needs the last bit from the 113-bit shift registers
to know when a block has completed the appropriate number of
rounds, we can implement the registers using 4 LUTs from the
M-type logic slices without requiring any flip flops.

The controller fulfills requirements 2, 3, 4, and 5 using two 12-bit-
long shift registers, where one tracks which pipeline stages have a
block in them, and the other tracks the mode for each block in the
pipeline. The pipeline-tracking shift register controls whether the
add round and initial round key instances should be reset (require-
ments 3, 4, and 5). The mode shift register is responsible for passing
the correct mode of operation to each sub-round transformation
so that the correct operation is performed on the block currently
in each pipeline stage (requirement 2). We implement these shift
registers using LUTs and flip flops, since the controller must access
multiple bits inside each register, making it impossible to use the
clocked M-type LUTs.

The controller fulfills requirement 6 by using a finite state ma-
chine to identify when the key schedule is initializing, or the entire
cipher is reset. During reset and initialization, the state machine
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Figure 3: Full Datapath Schematic

holds data in the datapath at a zero value, and releases it for normal
operation. The state machine also has a flush state that fills the shift
registers with zeros, as the shift-register configuration of the LUTs
doesn’t accept a reset signal.

3.3 Key Schedule

We designed the key schedule with a finite state machine that
iteratively computes round keys and inverse round keys for the
equivalent inverse cipher so that the key for any round is available
on request since any block in the pipeline can be in any round.
We use block RAM to store all of the computed keys, and use 12
counters to keep track of which round key is needed for each block
in the datapath. As with the sub bytes and mix columns block RAM,
we append the block mode bit to the memory look up address to
select between keys for encryption and decryption.

As described in Section 3.1, the key schedule logic connects to
the sub bytes and mix columns transformations, as round key cal-
culations use s-box substitutions, and the equivalent inverse cipher
requires inverse mix columns to each key for decryption. Since the
controller holds the rest of the datapath in reset during initializa-
tion, the key schedule is able to use these transformations without
data errors. During normal cipher operation, the key schedule state
machine holds its inputs to these transformations in reset to avoid
data errors as well.

Due to having three instances of the add round key transforma-
tion, it is possible for the datapath to need the initial, final, and
an arbitrary round key at the same time. We solve this challenge
by using one block RAM port to produce an arbitrary round key

and another port to always produce the final round key, and by
adding a 128-bit register to hold the initial round key. This register,
and two other 128-bit registers that hold intermediate keys during
initialization, make the key schedule have the most slice usage of
the design. This is reflected in Table 1 in the next section.

Summary: Our usage of block RAMs and DSPs allows us to build
a 12-stage pipeline for the DRAB-LOCUS datapath without relying
on slice logic to implement pipeline stages or sub-round transfor-
mations. We use the built in registers of block RAM and DSPs to
add stages to the pipeline. A small control module accompanies the
iterative and inner-pipelined datapath to ensure correct dataflow
through the cipher, and also keeps track of whether each block is
undergoing encryption or decryption. Finally, we take advantage
of the equivalent inverse cipher for AES to use the same datapath
for both encryption and decryption, and design the key schedule
to be able to produce any round key for any block in the datapath,
regardless if using encryption or decryption.

4 IMPLEMENTATION

We synthesized and implemented the DRAB-LOCUS design using
a high-speed-grade Zynq 7000 SoC featuring co-located ARM pro-
cessors and an Artix-7 grade FPGA (xc7z030sbg485-3). As a result
of our focus on using block RAM and DSP slices for area-efficiency,
the entire implementation fits in one half of a clock region. This
uses less power because the FPGA only has to route clock signals
to one section of the device.

In addition to fitting within a single clock region, all of the logic
elements are contained within two columns of block RAM titles.



This compact layout allows DRAB-LOCUS to run at the maximum
frequency supported by the block RAMs. This is because there
is less physical distance between components and, therefore, less
delay on the critical path.

This implementation of the DRAB-LOCUS architecture runs on
a 528 MHz clock, producing 7.055 Gbps of interleaved encrypted
and decrypted data with a latency of 217 nanoseconds. Table 1
gives a detailed breakdown of the resource and power usage. In
Appendix C, we provide more details on the physical layout. We use
Equations 2 and 3 to calculate latency and throughput, respectively,
as is done in other FPGA implementation studies [3, 13].

1.89ns
1cycle

Latency = (12 stages = 9 + 7 cycles) * (2)

Latency is defined as the number of cycles required to process
a single block of data. Each block passes through the 12-stage
datapath pipeline for 9 rounds, and then through the sub bytes, shift
rows, initial add round key, and final add round key transformations
to complete the initial and final rounds. We multiply the cycle count
by the clock period to obtain the latency in nanoseconds.

1block
115 cycles

128 bits

528.262 M cycles
*
1block

1second

x 12 blocks
3)

The throughput is calculated as follows. First, by dividing the
clock frequency by the cycle count we know how often the design
produces a block of data. We multiply this rate by 128 to account
for the 128 bits in each block. Finally, we multiply by 12 to account
for the 12 blocks processed concurrently in the datapath (12 blocks
of data are produced every 115 cycles).

Throughput =

Summary: The DRAB-LOCUS implementation uses only 909 LUTs,
593 flip flops, 16 block RAM, and 18 DSP in the target FPGA. This
low resource utilization produces a compact layout that allows the
design to run on a fast clock signal, where the clock speed is limited
by the maximum block RAM frequency and not the critical path
delay. The AES sub-round transformations use only 266 LUTs and
256 flip flops, less than half of the total design’s slice utilization.

5 EVALUATION

Our evaluation focuses on answering the following key questions.
First, how does DRAB-LOCUS compare to other FPGA-based AES
architectures? Specifically, what is the impact of different architec-
tural design decisions on throughput and resource usage? Second,
how efficiently does DRAB-LOCUS use its allocated resources? How
do we evaluate efficiency for AES designs in general? Finally, how
does the use of non-logic-slice resources affect power consumption?

We pick the following three architectures for our evaluation
because (i) they all leverage block RAM and DSP resources and
(ii) they all optimize for different metrics: AES-EncDec optimizes
for high-throughput, AES-Modes optimizes for low-area, and AES-
Efficient optimizes for area-efficiency. The latter architecture offers
the most direct and interesting comparison to DRAB-LOCUS.

As the Xilinx design tools compute the resource usage, power
consumption, and clock frequencies of the implementations, we
did not have to load the designs on to physical chips to measure
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performance. Instead we use the implementation statistics from
the studies, which we summarize in Table 2. Beyond these three
designs, we provide a brief analysis of more AES implementations in
Section 7 to compare DRAB-LOCUS to designs that do not leverage
block RAM and DSP, or do not describe how they use them.

AES-EncDec architecture. Wang and Ha achieved a throughput
of 78.22 Gbps using a fully-pipelined architecture at the cost of
high usage of all types of FPGA components: flip flops, LUTs, Block
RAM, DSP [18]. This is an example of a high-throughput design with
high resource usage. We also include it to discuss how architecture
structure can increase design performance at the expense of high
resource usage, even when two designs use the resource in the
same way. Additionally, this is the only comparable design that
supports both encryption and decryption, as DRAB-LOCUS does.

AES-Modes architecture. de la Piedra et al. built a low-area design
using 28 DSP slices, and only 159 logic slices and 15 block RAM.
However, their design has a much lower throughput than DRAB-
LOCUS with only 124 Mbps [2]. This is an example of a design with
low resource usage that produces low throughput. We also include it
to discuss how architecture structure can impact performance even
when two designs have similar resource usage. One main feature
of the AES-Modes design is that it operates on a single column
of the AES cipher state, which yields the low resource usage, but
also causes a higher latency. The design also supports the Galois
Counter mode of operation.

AES-Efficient architecture. Drimer et al. built an area-efficient
design that uses a single-column-based architecture, with four in-
stances of the datapath that together effectively operate on the
full cipher state [3]. It features an 8 stage inner-pipelined and iter-
ative structure, and has similar area-efficiency to DRAB-LOCUS.
However, this design only supports one process (encryption or de-
cryption depending on build configuration), whereas DRAB-LOCUS
supports both encryption and decryption for 12 concurrent blocks.
We include it as an example of how differences in the pipelined part
of an iterative design can either increase or decrease functionality.
We also investigate an unrolled variant of this architecture called
AES-Expanded when evaluating power consumption in Section 5.3.

5.1 Architectural Effects on Performance

The three comparable designs all use block RAM and DSP in similar
ways to DRAB-LOCUS to implement the mix columns and add
round key sub-round transformations. However, the architectural
design decisions made in each implementation heavily influence
performance with respect to resource usage.

AES-EncDec uses a fully-unrolled and pipelined architecture,
while the other designs have an iterative structure with either inner
or outer pipeline registers. AES-EncDec achieves a throughput of
78.22 Gbps, which is 11 times the throughput of DRAB-LOCUS,
however it also uses 17 times the number of LUTs, 25 times the
number of block RAM, and 8 times the number of DSP that DRAB-
LOCUS uses. Using a fully-unrolled architecture causes an increase
in resource usage that is disproportionate to the performance gain.

Conversely, AES-Modes uses an iterative architecture with outer-
pipeline registers that store the block passing through the cipher,
and has lower area than DRAB-LOCUS, but also significantly lower
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Table 1: Resource usage and power consumption of DRAB-LOCUS components

Resource Usage (#)

Power Consumption (mW)

Slices LUTs Flip Flops B.RAMs DSPs Slices B.RAMs DSPs Signal Clock
Control 21 27 34 - - 0.5 - - 0.5 3
Key Schedule 220 616 303 4 - 8 99 - 22 21
Datapath
Sub Bytes 23 64 - 4 - 3 86 - 12 0.5
Shift Rows 74 74 128 - - 1 - - 8 8
Mix Columns 38 - 128 8 9 0.5 173 35 42 10
Add Round Key 15 32 - - 3 0.5 - 13 3 0.5
Mnit 42 96 - - 3 2 - 0.5 3 0.5
*Final - - - - 3 - - 9 - 0.5
Total (data) 167 266 256 12 18 7 259 58 68 20
Total (all) 310 909 593 16 18 15.5 357 58 90.5 44
Table 2: Architecture performance comparison
Resource Usage (#) Performance Metrics
Slices LUTs Flip Flops B.RAMs DSPs Freq. Latency Throughput Device
(MHz)  (Cycles) (Gbps)
AES-EncDec 5613 15919 n/a 400 144 611 55 78.22  Virtex 6
AES-Modes 159 n/a n/a 15 28 91.5 188 0.124  Artix 7
AES-Efficient 296 393 665 9 16 550 84 6.7 Virtex 5
Datapath 259 338 624 8 16
DRAB-LOCUS 310 909 593 16 18 528 115 7.055 Zynq 7000
Datapath 167 266 256 12 18

throughput. The design uses half as many logic slices and 1.5 times
as many DSP as DRAB-LOCUS, but only achieves 2% of the through-
put that DRAB-LOCUS supports. Even with similar resource usage
and resource types, the performance of the designs differ greatly.
DRAB-LOCUS achieves its higher throughput by using block RAM
and DSP to add stages to the datapath pipeline.

The AES-Efficient datapath uses a similar iterative inner-pipelined
architecture to DRAB-LOCUS, but with 72 more LUTs, 368 more flip
flops, and 4 less block RAM. This difference in block RAM comes
mainly from the design decisions that enable DRAB-LOCUS to per-
form both encryption and decryption concurrently on 12 blocks of
data. AES-Efficient uses a T-box-based implementation which com-
bines the sub bytes and mix columns sub-round transformations
into a single look up and XOR operation [4]. However, this technique
utilizes an entire 36 kilobit block RAM to store the lookup values
for encryption, so it is not possible to perform both encryption and
decryption using a single block RAM configuration.

By keeping the sub bytes and mix columns sub-round transfor-
mations separate, DRAB-LOCUS is able to perform both encryption
and decryption at the expense of using 4 more block RAMs. This
technique increases the latency of DRAB-LOCUS by two extra
delay cycles for the sub bytes sub-round transformation, but also in-
creases the capacity of the datapath to operate on two more blocks
of data than if the design used T-boxes. Even with extra latency,
DRAB-LOCUS maintains higher throughput than AES-Efficient,
and supports both encryption and decryption.

The DRAB-LOCUS key schedule was also designed to be able to
provide any round key at any time, in order to support encryption
and decryption for 12 concurrent blocks in the datapath. In order to
achieve this, the key schedule utilizes 616 LUTs, 303 flip flops, and
4 block RAMs, which increases the total LUT usage beyond that of
AES-Efficient. But, at the expense of these extra resources, DRAB-
LOCUS achieves more functionality. This shows that including extra
algorithm optimizations such as T-boxes can reduce the potential for
design functionality, and that minimally increasing resource usage



can allow for extra functionality, such as supporting encryption
and decryption concurrently on multiple blocks.

Summary: Pipelined designs are able to achieve high throughput
at the cost of higher resource usage. Importantly, the increase in
resources may outweigh the increase in throughput. In contrast,
slightly reducing resource usage and pipelining can drastically
lower throughput. We conclude that maximizing the number of
pipeline stages in an iterative design without increasing resource us-
age results in better area-efficiency. Furthermore, using algorithmic
optimizations may limit functionality such as processing multiple
concurrent blocks and performing both encryption and decryption.
DRAB-LOCUS achieves greater area-efficiency than the other de-
signs by balancing low resource usage and high-throughput, while
offering the advanced functionality of interleaving encryption and
decryption operations on 12 concurrent blocks of data.

5.2 Implementation Efficiency

Studies that build FPGA designs for data processing often evaluate
the efficiency of their implementation by computing the amount
of throughput produced per logic slice. Each of the 3 comparable
designs reports their efficiency in this way, however this metric
does not give any information on how much the block RAM and
DSP resources contribute to the design throughput. For example,
AES-EncDec reports an efficiency of 13.9 Mbps/slice, although the
design also uses 400 block RAM and 144 DSP. Furthermore, this
metric does not incorporate the usage of each logic slice. Since each
slice in a design could be using from 1 LUT and 1 flip flop to 4 LUTs
and 8 flip flops, the throughput per slice metric does not accurately
reflect how well the slice logic is being used to process data.

Starting with this metric, the designs have the following efficien-
cies: AES-EncDec achieves 13.9 Mbps/slice, AES-Modes achieves
0.778 Mbps/slice, AES-Efficient achieves 22.6 Mbps/slice, and DRAB-
LOCUS achieves 22.75 Mbps/slice. Aside from the fact that these
calculations do not address the slice utilization issue previously
described, these calculations also neglect whether all of the slices
in a design are part of the datapath, key schedule, or controller. As
the controller and key schedule do not process input data directly,
it may not be appropriate to include their slice usage in such effi-
ciency measurements. This is more of a philosophical question of
which we leave further discussion for future research.

To address these two issues, we propose that evaluation of design
efficiency should incorporate the following metrics for resources in
the datapath only: Mbps/LUT, Mbps/flip flop, Mbps/block RAM mul-
tiplied by the average block RAM memory usage, and Mbps/DSP.

The LUT and flip flop metrics would be useful in applications
where a limited number of logic slices are available, as it shows
how well the implementation would capitalize on the remaining
available logic slice elements. On the other hand, the block RAM
and DSP metrics would be informative in the case where these
resources are limited, and a designer is concerned about whether a
design uses them to their full potential. Additionally, we incorporate
the percentage of memory in the block RAMs that is utilized into
the metric to indicate how effectively the memory is used.

As Drimer et al. address in their study, we suggest that future
studies report as much information as possible about their imple-
mentations in order to increase transparency when evaluating AES
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Table 3: Throughput Per Resource (Mbps/#)

LUT FlipFlop B.RAM  DSP

AES-Efficient 19.8 10.7 837.5 418.75
DRAB-LOCUS 265 27.56 220.47 391.94

Table 4: Datapath power consumption (mW)

Logic B.RAM DSP Signal Total

Slices +Clock
AES-Efficient 56 285 111 39 491
AES-Expanded 165 2140 833 74 3212
DRAB-LOCUS 7 259 58 88 412

designs, as we do in this paper. For example, neither AES-Modes
nor AES-Efficient state how their control mechanisms contribute
to resource usage, and neither AES-EncDec nor AES-Modes state
how their key schedules contribute to resource usage. This makes it
difficult to accurately evaluate their efficiency using these metrics.

The adjusted efficiency measurements for AES-Efficient and
DRAB-LOCUS is shown in Table 3, as these two designs state the
resource usage for the datapath alone. This table also reveals that
it is effective to use block RAM and DSP in the AES datapath, as
each singular unit is able to process large chunks of data (32-bit for
block RAM, 48-bit for DSP), instead of splitting operations across
multiple LUTs and flip flops.

Summary: The traditional technique of calculating throughput per
logic slice is a weak metric for evaluating design efficiency in terms
of performance versus area. We propose that efficiency analysis
include four measurements: throughput per LUT, throughput per
flip flop, throughput per block RAM, and throughput per DSP. The
block RAM measurement should incorporate what percentage of
the block RAM memory is actually used to process data. The DSP
measurement reveals that using block RAM and DSP in the datapath
is an effective way to process large chunks of data. DRAB-LOCUS
has nearly two times better LUT and flip flop efficiency than the
other area-efficient design in our evaluation, AES-Efficient, and
similar DSP efficiency with more functionality.

5.3 Design Effects on Power Consumption

While there are fewer FPGA AES studies that focus on low-power
implementations, power consumption is still an area of interest for
many system designers. Of the three comparable designs, only the
designers of AES-Efficient report power consumption. Additionally,
Drimer et al. include a second fully-unrolled implementation built
on the base structure of the AES-Efficient design, which we refer
to as AES-Expanded [3]. The power consumption of these two
implementations and DRAB-LOCUS is shown in Table 4.
AES-Efficient uses more LUTs and flip flops than DRAB-LOCUS,
which is the cause of the higher slice power consumption. However,
AES-Efficient uses slightly less block RAM and DSP resources than
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DRAB-LOCUS, which is not reflected in the power comparison.
This may be due to differences in the target device, as AES-Efficient
is implemented on a Virtex FPGA, which is a high-performance
FPGA that naturally consumes more power than the Zynq 7000
SoCs. This highlights the importance of disclosing the target device
as part of an AES implementation analysis.

On the other hand, AES-Expanded consumes nearly 10 times the
power of DRAB-LOCUS and AES-Efficient. With a fully-pipelined
structure, this design also uses significantly more resources. Ta-
ble 4 shows that the large increase in power consumption from
AES-Efficient to AES-Expanded comes from the block RAMs and
DSP slices, which both have increase factors of 7.5, while the logic
slice power only increases by a factor of 3. This shows that using
more block RAMs and DSP slices in a design will also significantly
increase the power usage. Therefore, while low-area designs cer-
tainly consume less power due to their overall lower resource usage,
low-area designs that use block RAMs and DSP slices will have
higher power consumption than equivalent designs that primarily
use logic slices.

Finally, while the power consumption of a running implementa-
tion is important for power supply considerations, it is also desirable
to know how much power over time is required to process data. We
propose that an additional power metric of the nanowatt-seconds
required to process a single block is needed to better measure
the tradeoffs between latency and pipeline length. Overall, this
metric reflects how effectively the design uses its power to pro-
cess data. The DRAB-LOCUS design uses 7.47 nanowatt-seconds,
AES-Efficient uses 9.37 nanowatt-seconds, and AES-Expanded uses
622.17 nanowatt-seconds to process a single block of input data.

Summary: Replacing logic slices with higher-power components,
like block RAMs and DSP slices, will increase the overall power
usage, but with careful design the performance growth of the data-
path outpaces this power increase. Furthermore, the target device
directly impacts power consumption, so it is important for future
studies to describe the exact evaluation platform for accurate power
evaluation. Further, we recommend that studies include an evalua-
tion of their power usage that shows how much power, in nanowatt-
seconds, is required to process a single block of data. This metric
better measures the relationship between power consumption and
performance, showing that DRAB-LOCUS consumes less power
over time to process a single block of data than AES-Efficient.

5.4 Overall Summary

Area-efficiency requires striking a balance between throughput and
resource usage, primarily by capitalizing on under-utilized compo-
nents. DRAB-LOCUS strikes this balance by leveraging block RAM
tiles and DSP slices key components in the architecture’s compact
datapath structure. Further, evaluating area-efficiency requires the
use of new metrics that better encapsulate LUT, flip flop, block RAM,
and DSP usage. These new metrics offer more insight into how ef-
fectively a design uses the resources available in the target device.
DRAB-LOCUS’s use of block RAMs and DSP slices results in an
implementation with similar efficiency to AES-Efficient, but higher
throughput, less power consumption over time, and greater func-
tionality, i.e., support for multiplexed encryption and decryption
on 12 concurrent blocks.

6 ACCELERATORS ON EMBEDDED SYSTEMS

One promising application of area-efficient AES architectures is
enabling efficient cryptographic primitives on resource-constrained
embedded systems without forcing the system designer to choose
between using the FPGA for security or some other operation. In
this section, we discuss the feasibility of using several AES imple-
mentations, including DRAB-LOCUS, alongside other hardware
accelerators. To do this, we compute how many logic slices, block
RAMs, and DSPs are available after co-location on Zynq 7000 de-
vices. Complicating our analysis, we can only estimate the number
of logic slices in each accelerator, as the studies only report their
LUT usage. Therefore, we present a best-case analysis, underesti-
mating the number of logic slices. Further, the AES designs may run
slower after co-location due to architectural differences between the
original devices and the Zynq devices. We consider the following
hardware accelerators for co-location with the AES designs:

(1) Video Processing: Hoozemans et al. designed a video pro-
cessing system using softcore processors for dedicated image
filtering. The system utilizes 8,315 slices, 105 block RAMs,
and 26 DSPs, which was implemented on a Zynq 7000 (xc7z020)
SoC. This platform has the following available resources:
13,300 slices, 140 block RAMs, and 220 DSPs [6].

(2) DLAU Wang et al. built a deep learning accelerator on a
Zynq 7000 (xc72020) SoC using 9,096 slices, 35 block RAMs,
and 167 DSPs [17].

(3) CNN Qiu et al. built a convolutional neural network accel-
erator for image classification using 45,654 slices, 486 block
RAMs, and 780 DSPs [11]. Their study used a Xilinx ZC706
evaluation board which features a Zynq 7000 (xc7z045) with
54,650 slices, 545 block RAMs, and 900 DSPs.

(4) DNN Hao et al. proposed a methodology for designing FPGA-
based deep neural network accelerators and presented sev-
eral different network model implementations on a Zynq
7000 (xc7z020) SoC [5]. We selected three of their new mod-
els: DNN 1 uses 10,973 slices, 134 block RAM, 202 DSPs;
DNN 2 uses 10,161 slices, 109 block RAMs, 186 DSPs; DNN
3 uses 11,704 slices, 108 block RAMs, and 172 DSPs.

Table 5 shows the amount of remaining resources after co-locating
each AES design with each non-AES accelerator—a negative re-
source value in any column indicates that the two accelerators
cannot fit on the same FPGA. AES-EncDec does not fit alongside
any of the accelerators due to the high resource usage of its fully-
unrolled architecture. While this design produces high throughput,
it is not suitable for co-location with other accelerators. AES-Modes,
AES-Efficient, and DRAB-LOCUS all fail when co-located with DNN
1, due to the DNN accelerator’s high block RAM and DSP usage.
However, in all other cases DRAB-LOCUS and the other two AES
designs are small enough to be implemented alongside the other ac-
celerators. Among these three, DRAB-LOCUS is the most attractive
option as it offers the most throughput and supports concurrent
encryption and decryption.

Summary: Area-efficiency is important for allowing co-location
of accelerators on the same FPGA. DRAB-LOCUS makes the most
efficient use of the available resources to support the most function-
ality and produce the highest throughput among the AES designs
that support co-location.
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Table 5: Available resources after co-location

AES-EncDec AES-Modes AES-Efficient DRAB-LOCUS
Slices B.RAMs DSPs Slices B.RAMs DSPs Slices B.RAMs DSPs Slices B.RAMs DSPs
Video -628 -365 50 4,826 20 166 4,689 26 178 4,675 19 176
DLAU -1,409 -295 -91 4,045 90 25 3,908 96 37 3,894 89 25
CNN 3,383 -341 -24 8,837 31 92 8,700 50 104 8,686 43 102
DNN 1 -3,286 -394 -126 2,168 -9 -10 2,031 -3 2 2,017 -10 0
DNN 2 -2,474 -369 -110 2,980 3 6 2,843 22 18 2,829 15 16
DNN 3 -4,017 -368 -96 1,437 17 20 1,300 23 32 1,286 16 30

7 RELATED WORK

In contrast to DRAB-LOCUS and the architectures discussed pre-
viously, there are a number of proposed architectures that do not
leverage block RAMs or DSPs, or do not provide detailed explana-
tions of how they use block RAMs and DSPs. Few of these architec-
tures are designed for area-efficiency, but are included to provide a
broader context for our work. Below, we broadly divide these into
the following categories based on their structure: (1) instruction-
based, (2) purely iterative with no pipeline, (3) iterative with inner
pipelining, and (4) fully pipelined and unrolled.

Norbert et al. proposed an uncommon instruction-based design,
where an external interface controls data through the cipher. This
design produces 215 Mbps of encrypted (or decrypted) data running
on a 161 MHz clock, and utilizes 1,125 logic slices [10]. Tay et al.
proposed a design that has a purely iterative architecture which
produces 597 Mbps of encrypted data running on a 107 MHz clock,
and utilizes 3,048 LUTs and 808 flip flops [16].

Rahmunnisa et al. proposed an iterative inner-pipelined design
that produces 37.1 Gbps of decrypted data running on a 505 MHz
clock, and utilizes 3,788 LUTs, 2,056 flip flops, 48 block RAMs, and
2 DSP slices [12]. Although this design uses block RAM and DSP,
the nature of their use was not explicitly described, so we did
not include the design in our detailed analysis. Farashahi et al.
proposed an iterative inner-pipelined design that produces 7.95
Gbps of encrypted data running on a 671.5 MHz clock, and utilizes
3,557 LUTs, and 2,132 flip flops [13]. Rao et al. proposed an iterative
inner-pipelined design that produces 676 Mbps of encrypted data
running on a 311.7 MHz clock, and utilizes 359 logic slices [8].

Zhang et al. proposed a fully-unrolled and pipelined design that
produces 93.5 Gbps of encrypted data running on a 730.7 MHz
clock, and utilizes 5,081 logic slices [22]. Samiee et al. proposed a
fully-unrolled and pipelined design that produces 43.71 Gbps of de-
crypted data running on a 341.5 MHz clock, and utilizes 7,865 logic
slices [14]. Oukili and Bri proposed a fully-unrolled and pipelined
design that produces 79 Gbps of encrypted data running on a 617.6
MHz clock, and utilizes 14,736 LUTs and 18,305 flip flops [9].

While these related works produce high throughput, it may be
difficult to use the nearby block RAMs and DSPs due to logic con-
gestion and routing challenges. Comparatively, the DRAB-LOCUS
architecture is significantly more area-efficient due to its use of
block RAMs and DSPs. By offloading some processing from logic

slices, AES-Efficient and DRAB-LOCUS make better use of avail-
able resources. Furthermore, DRAB-LOCUS achieves similar area-
efficiency as AES-Efficient, but offers more functionality.

8 CONCLUSIONS

While AES and other cryptographic primitives form the foundation
of security, there are myriad safety-critical embedded systems that
lack the ability to do these operations efficiently. Consequently, such
systems often forgo cryptographic operations in favor of saving
their limited computational and power resources for other tasks.

FPGA-based hardware acceleration offers a performant, low-
power solution to cryptography on embedded systems. Just as
importantly, FPGAs also offer the flexibility to concurrently acceler-
ate other emerging operations, e.g., deep learning. However, taking
advantage of these new possibilities requires a new approach to
developing accelerator architectures, namely one that focuses on
balancing raw performance with resource usage so that system
designers do not have to choose between using the FPGA for cryp-
tographic operations or using it for other algorithms. In short, area-
efficient designs make better use of available resources to allow for
co-location of hardware accelerators.

We proposed an area-efficient AES architecture, DRAB-LOCUS,
that achieves a balance between resource usage and throughput by
incorporating under-utilized components, such as block RAM tiles
and DSP slices. We identified how architectural design decisions
influence key trade-offs and discussed new metrics for evaluating
the efficiency and power usage of cryptographic accelerators. These
metrics provide a measure of how effectively a design capitalizes
on the available resources to improve performance. DRAB-LOCUS
achieves higher resource efficiency than throughput-focused AES
architectures, higher throughput than low-area designs, and more
functionality and lower power usage than other area-efficient de-
signs. While our focus is on AES, the design principles we discuss
in this paper are applicable to other cryptographic algorithms.

Area-efficient hardware accelerators promote the adoption of
security for new and emerging applications. Such designs, for ex-
ample, may allow robotic swarm systems with limited resources to
offload parts of network security operations, such as TLS, to hard-
ware. Regardless of the specific application, area-efficient hardware
acceleration is a promising approach for boosting the design of
secure embedded systems.
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A XILINX 7 SERIES FPGAS

FPGAs have a column-based structure, where groups of config-
urable logic blocks lie in between columns of block RAMs and
DSPs, as shown in Figure 4. Within each logic block there are two
logic slices that contain 4 LUTs and 8 flip flops (Figure 5). We argue
that area-efficient designs are needed to take advantage of available
resources due to to tight packing of components in the FPGA. A
design that only uses the slices, or just the block RAM and DSP,
in an area could make it difficult for others to access the unused
resources. By using all of the available resources in a given area, a
design can increase its performance and reduce resource waste.
The Xilinx 7-series block RAM supports two independent data
ports that access the same bank of memory as shown in Figure 6.
The dual port feature is helpful in a wide range of applications, and
we take advantage of this by using a single block RAM to perform
two byte lookups in the sub bytes and mix columns transformations.
Furthermore, the input address and output data size are flexible,

CARRYCASCIN* |

| CARRYINSEL

Figure 7: Xilinx 7-Series DSP48E1 Slice

which also allows different use cases where data sizes may not
match for each block RAM.

The Xilinx 7-series DSP slices support a number of arithmetic
and logic functions, which allows them to be used in a number
of applications, such as AES, other than signal processing. The
logic functions operate on two inputs, which have optional input
registers, as shown in Figure 7, to decrease the critical path from
other components. Additionally, DSP slices have dedicated inputs
and outputs connected to other vertically-aligned DSPs for high-
speed cascaded calculations.
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B MIX COLUMNS MATRIX EQUATIONS

The mix columns transformation performs matrix multiplication
between the cipher state block and a fixed encryption or decryption
matrix, shown below. The multiplication involves each byte of the
cipher state block, and each byte of the fixed matrix, so we store
the products of each input byte as a 32-bit vector in block RAM.
Since the matrices for encryption and decryption are congruent,
but with different values, we use the same storage format order for
encryption and decryption, as shown in Figure 8.

Encryption Matrix Decryption Matrix
02 03 01 01 0OE 0B 0D 09
01 02 03 01 09 OE 0B 0D
01 01 02 03 0D 09 OE 0B
03 01 01 02 0B 0D 09 OF

We use the following equations (4) for both encryption and
decryption to form the input vectors for the DSP XOR phase of mix
columns (see Section 3.1.3). These equations are for the high bits of
the output block, and we use similar patterns for the middle and
low bits.

Address Data
0 [00*02 : 00*01 : 00*01 : 00*03]
1 [01*02 : 01*01 : 01*01: 01*03]
2 [02*02 : 02*01 : 02*01 : 02*03]

255 [02*02 : FF*01: FF*01 : FF*03]

256 [00*0E : 0009 : 00*0D : 00*0B]

257 [01*0E : 01*09 : 01*0D : 01*0B]

511 |[FF*0E : FF*09 : FF*0D : FF*0B]

Figure 8: Mix Columns Multiplication Storage

Veco = RAM[s0,0](31 : 24] + RAM(s0,0][23 : 16]+
RAM[S()’(]][ls : 8] + RAM[SO,()][7 : 0]+
RAM([s0,1][31 : 24] + RAM([s0,1][23 : 16]

Vecy = RAM(s1,0][7 : 0] + RAM(s1,0][31 : 24]+
RAM([s1,0][23 : 16] + RAM[s1,0][15 : 8]+
RAM[SL]]U 1 0] + RAM[sl’l][fil : 24]

Vecy = RAM(s2,0][15 : 8] + RAM([s2,0][7 : 0]+
RAM([s2,0][31 : 24] + RAM[sz,0][23 : 16]+
RAM[SZJ][IS : 8] + RAM[SZJ]U : 0]

Vecs = RAM(s3,0][23 : 16] + RAM([s3,0][15 : 8]+
RAM([s3,0][7 : 0] + RAM(s3,0][31 : 24]+
RAM([s3,1][23 : 16] + RAM([s3,1][15 : 8]

4)
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C PHYSICAL LAYOUT OF DRAB-LOCUS

We implemented the DRAB-LOCUS architecture on a Zynq 7000
(x¢72030) SoC. Figure 9 shows that the implementation fits in one
half of a clock region, which can save power in applications where
the other clock regions are not used. Since the design is compact,
the device does not need to use extra power to route clock and
control signals to multiple clock regions.

Figure 10 shows that the DRAB-LOCUS implementation lies be-
tween two columns of block RAMs, and uses most of the available
DSPs between them. Furthermore, the larger filled-in squares be-
tween the block RAMs and DSPs indicate high usage of the LUTs
and flip flops available in the logic slices. This shows that DRAB-
LOCUS makes effective use of nearby resources, and prevents slices,
block RAMs, and DSPs from being unused. If DRAB-LOCUS did
not use the available block RAMs and DSPs, it would be difficult
for other co-located accelerators to use them due to the occupied
slices surrounding them.
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Figure 10: Physical Layout of DRAB-LOCUS
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